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ABSTRACT
Designing and understanding the organizational principles of living tissues requires the integra-
tion of diverse knowledge and skills owing to the extreme complexity of biological systems. This
complexity makes predicting tissue behavior and dynamic properties particularly challenging. Ar-
tificial intelligence (AI) and machine learning (ML) have emerged as powerful tools for addressing
these challenges. They have demonstrated success in fields including natural language processing,
computer vision, fraud detection, autonomous systems, and robotics. However, their application to
tissue engineering and regenerative medicine (TERM) presents unique domain-specific challenges
that remain unresolved. This narrative review identifies and discusses five critical limitations that
currently hinder the effective integration of AI and ML into TERM, namely: (1) imprecise terminol-
ogy in biology, (2) lack of formalized concepts and terminology in TERM, (3) absence of clear logical
constructs in the field, (4) limited development of quantitative physiology, and (5) lack of quantita-
tive requirements for applying engineering principles.
Key words: artificial intelligence, artificial organs, ChatGPT, deep learning, intelligent design,
machine learning, physiological relevance, regenerative medicine, tissue engineering, quantitative
physiology

INTRODUCTION
A deep understanding of the principles underly-
ing living organisms remains elusive, and novel ap-
proaches are needed. The rise of artificial intelli-
gence (AI) has given researchers hope of applying
these technologies to various fields, including tissue
engineering and regenerative medicine1,2. To date,
AI-based solutions, such as ChatGPT andDeepSeek,
have already been applied to natural language pro-
cessing, computer vision, fraud detection, virtual as-
sistants, autonomous vehicles, and robotics. Stud-
ies on AI applications in tissue engineering currently
focus on solutions for structure-function relation-
ships, material design, scaffold and device fabrica-
tion, and cell patterning3–5. Most studies have con-
cluded thatmachine learningmodels are well-suited
for analyzing large, high-dimensional data, and that
certain biological relationships can be readily ana-
lyzed using traditional statistical methods1,6.
Therefore, AI holds promise as a unique tool for ad-
vancing the development of artificial organs and tis-
sues, which are currently facing considerable chal-
lenges. Initially, it was expected that neural net-
work models would contribute significantly to the
development of bioengineering techniques7, but rel-
evant principles have not yet been developed. Only

a few such models based on engineered principles
can be found in tissue engineering applications,
such as finite element models8–10, the phase space
method 11, the minimaxmethod12, failure mode and
effects analysis (FMEA)13, reliability engineering14,
and design for manufacturability15,16. The absence
of AI-based generative models for tissue engineer-
ing and the design of human organs has led to
substantial restrictions in this field. On the other
hand, synthetic morphogenesis is a promising con-
cept for overcoming limitations in tissue engineering
approaches 17, but it has encountered challenges in
genome organization and has yet to lead to signifi-
cant breakthroughs in the field.
There are some interesting studies on the appli-
cations of AI in tissue engineering and regenera-
tive medicine (TERM). For instance, computational
methods are used to model scaffolds for neural tis-
sue engineering. The finite element method (FEM)
has been identified as an essential tool for model-
ing the boundaries and initial value problems that
are characteristic ofmany physical processes related
to the functioning of tissue-engineered scaffolds18.
However, FEM is a standard mathematical model-
ing procedure, so the benefits of AI integration are
unclear.
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A created convolutional neural network architec-
ture is efficient at detecting and predicting contin-
uous values for DNA and protein concentrations19;
however, this method is related to regression anal-
ysis because it is questionable and depends on ini-
tial conditions. A deep learning–based inverse de-
sign framework for disordered cellular materials
(Voronoi lattices) with the desired target relative
density and Young’s modulus was developed for
three-dimensional architected cellular materials20.
The applications and implications of artificial in-
telligence in regenerative medicine state that ‘AI
has emerged as a powerful tool that analyzes the
physicochemical and biological properties of a wide
range of materials to predict the most successful
outcomes’ and that ‘AI algorithms can identify pat-
terns and associations in cellular behavior and in-
teractions, thereby enabling the prediction of cell
behavior in different environments’; however, these
claims are not presented with evidence to support
them 21. For example, studies on resorbable scaf-
folds for oral and maxillofacial tissue engineering
have not offered examples or approaches for scaf-
fold design 22.
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The limited results obtained in these studies are un-
surprising. A little-known property of complex sys-
tems is that “several simulation studies have found
that using logistic regression for propensity score
modeling can result in biased treatment effect es-
timates when the model is misspecified, especially
in complex data where non-linear and non-additive
terms are not included in the propensity score
model. This situational bias occurs because para-
metric models, such as logistic regression, require
assumptions about covariates’ functional form and
distribution. When estimating propensity scores
with many covariates, this problem can be particu-
larly pronounced” 23. This means that the use of AI-
based models for analyzing complex systems is pre-
configured and thus subject to configuration-related
limitations. For instance, Catalanotti, G. (2024)
demonstrated success in contexts where the func-
tions of relations between parameters have clear
definitions 24. Unfortunately, this principle, rooted
in information theory, is often overlooked by some
researchers. Essentially, the critical question is
whether physiological responses can be categorized
as definite or indeterminate.
Moreover, the problem may be more profound be-
cause some researchers believe that modern mathe-
matics is ineffective in biology 25, and that applying
AI to biological problems is unsuccessful by defini-
tion, primarily due to the absence of a new kind of AI

that uses methods of proof theory to provide justifi-
cations along with answers. This approach differs
from calculation-based AI, machine learning, and
data science methods.
Current AI models use correlation matrices to ana-
lyze large datasets, which are sensitive to initial val-
ues and boundary conditions 26. This highlights the
intricate relationship between data structure and
predictive accuracy. This sensitivity underscores the
importance of carefully selecting and processing ini-
tial data because minor variations can lead to sig-
nificantly different outcomes. Previous studies have
shown the ineffectiveness of applying mathematical
approaches in biology 25,27, indicating that under-
standing biological processes requires developing a
new mathematical language 27. These aspects are
likely the main cause of mathematics’ unreasonable
ineffectiveness in biology 25,28. The challenge lies in
capturing the dynamic and often nonlinear nature of
biological processes and translating these complex
phenomena into a precise and flexible mathemati-
cal language that can capture the nuances of living
systems.
Currently, approaches are being developed for de-
signing and producing biological networks from
high-level program specifications 29. However, the
absence of engineering approaches in tissue en-
gineering makes it seemingly impossible to ade-
quately apply these methods30. This review de-
scribes essential steps for applyingmachine learning
and AI to achieve breakthroughs in tissue engineer-
ing and regenerative medicine.

ADVANCES AND LIMITATIONS
OF AI IN TISSUE ENGINEERING
AND REGENERATIVE MEDICINE
Imprecise Terminology in Biology and Tis-
sue Engineering
The efficacy of AI models, particularly large lan-
guage models, relies heavily on precise and stan-
dardized terminology. The absence of commonly ac-
cepted terminology and standards can render ma-
chine learning applications inadequate. For exam-
ple, the concept of biocompatibility has multiple
interpretations31, thereby complicating biomaterial
development absent detailed descriptions ensuring
interpretability.
An additional barrier to AI applications arises from
terminological imbalance. Recognizably, advances
in the previous four critical areas remain predom-
inantly introductory, such that machine learning
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models remain constrained by prevailing terminol-
ogy. Correlational AI solutions trained on exist-
ing datasets are thus limited by such terminol-
ogy and cannot achieve substantive breakthroughs.
For example, employing AI to analyze complex sys-
tems featuring parameters with indeterminate dis-
tribution functions, coupled with unknown a pri-
ori causal relationships—e.g., in quantitative physi-
ology, morphogenesis, and gene regulation, wherein
inter-parameter relationships remain unknown—is
unlikely to confer significant benefit32. Conversely,
beneficial results manifest primarily when underly-
ing functions are well defined, even if distribution
functions remain indeterminate 22,24,33,34. Moreover,
where causal relationships are firmly established, AI
applications demonstrate efficacy35,36, as predicted
by information theory. Consequently, existing stud-
ies and reviews on AI in tissue engineering tend to
be superficial and lack novelty.
Prior to implementing machine learning for feature
analysis and extraction from tissue-level data, elu-
cidating simple structure–function relationships in
biological systems, or employing machine learning
to correlate tissue-level findings with clinical data,
precise resolution of imprecise terminology in biol-
ogy, tissue engineering, physiology, and medicine is
essential to enable term formalization.

Lack of Term Formalization
Physiology is a broad and interdisciplinary field that
has evolved over centuries. Terms and concepts de-
rive from various languages, cultures, and historical
periods in physiology and related fields, yielding di-
verse yet complex terminology. The historical evo-
lution of physiology and biology has produced syn-
onymous terms for multiple concepts or organisms,
contributing to confusion and inefficiency in com-
munication and learning37. This interplay of sci-
ence, history, and language highlights the dynamic
nature of physiology as a discipline shaped by its
history yet advancing knowledge.
Understanding the principles of physiology requires
a focus on the deep underlying mechanisms, poten-
tially based on symmetries and conservation laws in
biological systems 38. Symmetries in living organ-
isms are well-known and elucidated, as are those in
biochemical reactions39. Noether’s theorem states
that every symmetry corresponds to a conservation
law, which could apply to macroscopic objects or
their properties 40; thus, there are no theoretical lim-
its to formalizing biological interactions in biological
systems. This lack of term formalization is evident

in the AI-based development of organoids, where
AI integration enables efficient organoid construc-
tion, multiscale image analysis, and precise preclin-
ical evaluation41.
Biochemical symmetry is another potentially fruit-
ful concept for elucidating the persistence and sta-
bility of biochemical reactions. Biochemical re-
action networks often contain duplication, which
manifests as symmetry in the underlying hyper-
graph 39,42. The nature of biochemical symmetry en-
compasses both the structural and functional sym-
metry observed in biological molecules and com-
plexes 43, potentially underpinned by these conser-
vation laws. Therefore, the lack of term formaliza-
tion prevents the development of the logical con-
structs required for design and engineering.

Absence of Logical Constructs in Tissue
Engineering
Tissue engineering integrates principles of biol-
ogy, engineering, and computer science to create
or repair human tissues. This engineering ap-
proach requires formally defined rules and con-
straints 44. However, developing quantitative phys-
iological models requires specialized logical con-
structs essential for data markup and comprehen-
sive understanding of underlying processes. Such
logical constructs facilitate the design of algorithms
for deep learning models that handle data process-
ing, noise filtration, and development of reasoning
methodologies.
Although biological rules are grounded in a deep un-
derstanding of biological processes and their oper-
ational constraints, developing quantitative physi-
ological models remains central, providing a struc-
tured framework for exploring andmanipulating the
intricacies of biological systems. These models rely
on specialized logical constructs for data representa-
tion and facilitating comprehensive understanding
of biological phenomena.
Incorporating logical constructs in tissue engineer-
ing and quantitative physiological modeling is indis-
pensable 45. They offer a framework through which
data can be annotated and understood, and facili-
tate the creation of algorithms essential for field ad-
vancement. Deep learningmodels, now increasingly
significant, depend on these algorithms to process
vast amounts of data, filter out noise, and extract
meaningful patterns46. However, integrating rea-
soning methodologies in AI systems presents a no-
table challenge, without which AI struggles to per-
form critical data analysis tasks such as parsing,
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clustering, principal component analysis, approxi-
mation, and projection. These tasks are essential for
interpreting data from tissue engineering research
and informing the design of new experiments and
interventions.
The robustness observed in living systems, such
as genomic stability, hints at undiscovered logi-
cal constructs that could play a pivotal role in
morphogenesis—the process by which an organ-
ism’s shape develops47. This suggests that nature
employs complex logical frameworks to govern the
growth and development of living organisms, poten-
tially revolutionizing biological understanding and
the development of advanced models in tissue engi-
neering.
The absence of logical constructs is not univer-
sal in all areas of tissue engineering. In partic-
ular, for quantitative physiological models, logical
constructs are already a fundamental component.
These models inherently incorporate structured
logic to simulate physiological processes, thereby
distinguishing them from other areas of tissue en-
gineering where their integration remains nascent.
Conversely, the lack of reasoning methodologies in
AI makes it impossible to adequately conduct pars-
ing, clustering, or principal component analysis, ap-
proximation, and projection on data. The observed
robustness in living systems, linked to genomic sta-
bility, could indicate undiscovered logical constructs
that govern morphogenesis48.
Consequently, the paucity of logical constructs in
key areas of tissue engineering limits the develop-
ment and application of quantitative physiological
models.

Insufficiency ofQuantitative Physiology
The insufficiency of quantitative physiology not
only hampers the development of artificial organs
in tissue engineering but also limits the advance-
ment of predictive models essential for preclinical
testing of new treatments and interventions50. The
reliance on qualitative descriptions and the absence
of precise, numerical data on complex interactions
within human tissues have led to significant gaps
in our ability to create effective and reliable tissue-
engineered products.
One of the critical areas where this insufficiency
is particularly evident is in the understanding of
the mechanical properties of tissues and their in-
teractions with implanted devices or engineered tis-
sues 51. The biomechanical environment of cells, in-
cluding such factors as stress, strain, and fluid flow,

plays a critical role in cell behavior, differentiation,
and tissue development. The dynamic nature of liv-
ing tissues, characterized by continuous remodeling
and regeneration, adds another layer of complexity.
Quantitative physiology could provide insights into
the kinetics of these processes, enabling the design
of engineered tissues that can adapt to and evolve
within the host body.
Absence of robust quantitative frameworks leads to
an inadequate interface for understanding human
physiology, making it impossible to predict the be-
havior of implanted artificial organs. Quantitative
human physiology is an approach that could greatly
contribute to tissue engineering , extending beyond
classic human anatomy and physiology50,52. For
instance, the poorly understood 3D spatial distri-
bution of cells in living tissues is a challenge that
remains unsolved in both developmental biology
and tissue engineering53. The distribution, migra-
tion, and chemotaxis of cells are key considerations
in designing engineered tissue constructs. How-
ever, these distribution patterns are still unknown,
and researchers are forced to rely on those of na-
tive organs. Some promising approaches have used
cell label distribution to understand these princi-
ples, but these attempts are rare. Consequently, the
lack of quantitative physiology precludes an under-
standing of the quantitative requirements for tissue-
engineered constructs.
The field of systems biology aims to understand
the complex interactions within biological systems
through a combination of computational and exper-
imental techniques. The development and use of
mathematical models that can simulate the behav-
ior of cells and tissues under various conditions al-
low researchers to gain insight into the underlying
principles of tissue organization and function. How-
ever, these models require accurate and comprehen-
sive quantitative data, highlighting the need for ad-
vances in quantitative physiology.

The Absence of Quantitative Require-
ments
It has previously been demonstrated that an lack
of detailed requirements for tissue-engineered con-
structs can result in not only reduced efficacy of
these medical devices, but also an increased risk
of severe postoperative complications54. Currently,
existing standards for tissue-engineered organs pri-
marily focus on ensuring their biological and phys-
iological compatibility55–57. However, the inability
to predict the effectiveness of a specific design solely
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based on an analysis of individual material proper-
ties necessitates the development of clinical require-
ments to support the implementation of new tech-
nologies. The absence of quantitative requirements
prevents the application of engineering terminology
to formalize biological issues, which in turn hinders
the implementation of AI models in tissue engineer-
ing.

This lack of detailed requirements for tissue-
engineered constructs has significant implications
for regenerative medicine and tissue engineering58.
This gap not only compromises the efficacy of these
advanced medical devices but also increases the
risk of serious postoperative complications, as high-
lighted in previous studies. Current standards for
the design and evaluation of tissue-engineered or-
gans focus primarily on ensuring their biological and
physiological compatibility59. The challenge in pre-
dicting the effectiveness of tissue-engineered con-
structs solely from the properties of individual ma-
terials underscores the need for comprehensive clin-
ical requirements.

This gap notably affects the potential application
of artificial intelligence (AI) models in tissue engi-
neering. To bridge this gap, there is an urgent need
for interdisciplinary collaboration between engi-
neers, biologists, and clinicians. Such collaboration
would facilitate the establishment of quantitative
and qualitative requirements for tissue-engineered
constructs. By integrating engineering principles
and AI with tissue engineering, researchers can use
computational models to simulate the biological be-
havior of engineered tissues, optimize their design,
and predict their clinical outcomes. This approach
would not only improve the efficacy and safety of
tissue-engineered medical devices, but also acceler-
ate the bench-to-bedside translation of these tech-
nologies from laboratory to clinic.

Synthesis of the necessary advances in AI
for TERM development.
The necessary advances in AI for TERM develop-
ment, as described above, were summarized in Ta-
ble 1.

DISCUSSION
Standard engineering approaches have utilized vari-
ational models, coordinate fields, the minimax prin-
ciple, and other abstract mathematical concepts.
However, these methods have not been adequately
characterized in recent years. Moreover, manual

manipulations are labor-intensive, complex, imprac-
tical, and exceed simple abstractible rules that can
be formalized.
Despite years of attempts to establish tissue engi-
neering as a rigorous engineering discipline, it re-
mains largely empirical. The absence of regularities
and valid limiting laws prevents the formulation of
problems for which variational approaches could be
used to find solutions. The potential of AI-based so-
lutions is also limited by the need for biologically
interpretable explanations of a model’s output. Ad-
ditionally, the effectiveness of such models in un-
derstanding underlying biological mechanisms and
clinical applications is restricted41,60,61. These issues
can be summarized as the five challenges of artificial
intelligence in tissue engineering (Figure 1).
Attempts to quantitatively describe biological self-
organization mechanisms have thus far failed to
formulate consistent systems of equations. These
attempts have focused on synthetic morphogen-
esis 62, the standard morphological element ap-
proach 63, group theory 64, non-cooperative game
theory 65, and parametric symmetries and their im-
plications 66. These limitations highlight the op-
portunity to apply deep learning-based correlation
models to transition toward formalized engineering
methods. However, genetic technologies can ex-
tend the framework of existence beyond genomics.
Throughout history, science has shown that predic-
tion requires understanding. Therefore, without un-
derstanding the mechanisms underlying morpho-
genesis and the development of living organisms,
designing them will be impossible.
Contemporary approaches lack proven techniques
for describing the behavior of biological systems.
However, a number of studies on quantitative and
logical relationships in living systems offer hope, in-
cluding those on cell fate67,68, division of labor in tis-
sues 69, and principles of intertissue connections70.
Undoubtedly, the crucial breakthrough will be in
mathematics and mathematical logic, which will ex-
plain the identified patterns and effects that have
previously escaped researchers’ attention. Indeed,
collaborations between biologists and physicists are
already underway to understand evolution as multi-
level learning71–73.
All of this suggests that insights from the field of
self-organization of chemical systems could be piv-
otal. The optimal paths remain unclear, as are
non-cooperative games in living tissues or reinves-
tigating functional anatomy. Variant anatomy in-
troduces uncertainty regarding the robustness of
anatomical patterns74,75. Organs and tissues may
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Table 1: Synthesizing ideas for necessary advances in AI for TERM applications

Present state Consequence for AI Needed advance

1. Imprecise
Terminology in
Biology and

Tissue
Engineering

Many terms in the fields of
biology and tissue engineering
remain context-dependent and

ambiguously defined.

AI models have difficulty
aligning biological concepts
and performing consistent
annotations across datasets.

Create standardized,
ontology-driven

terminologies based on
measurable biological

features.

2. Lack of Term
Formalization

Key concepts are described in
general rather than formal,
machine‑ interpretable

definitions.

Automated reasoning and
data integration become

either unreliable or
impossible, resulting in
divergent solutions.

Develop formal ontologies
based on interconnected
terms that precisely
encode biological
relationships.

3. The Absence
of Logical

Constructs in
Tissue

Engineering

Lack of explicit, logical
frameworks in tissue engineering
that link structure, function, and
material interactions (formalized

terms).

AI-driven systems cannot
logically predict outcomes or
infer causal mechanisms.

Use rule-based and causal
logic models to represent

and test
tissue-engineering

hypotheses.

4. Insufficiency
for

Quantitative
Physiology

Biological models often omit
quantitative physiological
parameters or rely on
oversimplified data.

Computational predictions
tend to become less accurate

and less general across
biological scales.

Reformulate physiology
as multi-scale, rigorously
parameterized models.

5. The Absence
of Quantitative
Requirements

Experimental designs and system
specifications rarely define
measurable success metrics.

AI tools cannot optimize or
validate models based on
objective performance

criteria.

Establish explicit,
quantitative benchmarks

to guide the design,
modeling, and evaluation

processes.

Figure 1: Big Five Interrelated Challenges in Artificial Intelligence for Tissue Engineering and Regenerative
Medicine. Created with Biorender.com .
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not develop entirely according to a single mor-
phogenesis program, but rather undergo natural,
nonpathological changes. This suggests that such
changes are subject to mechanisms governed by hu-
man genetics and epigenetics.
Developmental biology is the study of the natu-
ral growth of tissues and the interactions between
progenitor tissues. During embryogenesis, cells are
capable of proliferation and interaction, including
symbiotic interaction76. As expected, natural inter-
actions in the early stages of development canmain-
tain neonatal growth and development, and present
an original, non-conventional approach to under-
standing human anatomy by examining interaction
variances.
The origins of competition among human tissues
during morphogenesis follow complex underlying
mechanisms. For instance, it has been discovered
that tissues compete for amino acids77. Game the-
ory is a tool for understanding cell behavior inmulti-
cellular organisms78, cellular sociology 79, and divi-
sion of labor in organisms80. In brief, this approach
can predict the outcomes of complex organ trans-
plants and even symbiotic interactions between two
or more tissues within one serous membrane.
Nobel laureate Peter Medawar described immuno-
logical patterns associated with cell-to-cell commu-
nication and immunological compatibility during
pregnancy81. The issue is that pregnancy resem-
bles organ transplantation because the fetus pos-
sesses paternal antigens and is a semi-allogeneic
graft that can survive without immunosuppression.
Hypotheses have been proposed to answer the ques-
tion of how a mother supports her fetus in utero,
now known as ”Medawar’s Paradox.” The mecha-
nisms governing fetal-maternal tolerance are incom-
pletely understood but may provide critical insight
into achieving immune tolerance in organ transplan-
tation 81.
Another crucial category of physiological responses
to both external (exogenous) and internal (intrin-
sic) factors is represented by tissue competitions,
and these highlight the dynamic interactions within
multicellular organisms82. These competitions are
not merely localized events, but are significantly in-
fluenced by, and contribute to, the broader physi-
ological context. This context encompasses various
types of tissues and their interactions. Cross-tissue
connections play a pivotal role in macrospatial re-
sponses, showcasing how tissues communicate and
influence one another across different regions of the
body 83.

Initially studied in the context of developmental bi-
ology and cancer research, cell competition has re-
vealed the mechanisms by which cells compete for
survival, dominance, and space84,85. When extrapo-
lated to the level of tissues and organs, these mech-
anisms suggest the broader applicability of competi-
tion and cooperation principles in shaping the archi-
tecture and function of multicellular organisms86.
However, the understanding and formalization of
these principles are primarily limited by the lack
of physiologically relevant engineering approaches.
The absence of underlying principles and models
limits the support machine learning systems can
provide to researchers and impedes the physical cre-
ation of tissue engineered constructs using irrele-
vant methods, such as 3D bioprinting87.
The perspective of tissue morphology formalization
shifts the traditional view of organ and tissue inter-
actions from a harmonious, cooperative framework
to one that recognizes competition and cooperative
dynamics as fundamental aspects of biological or-
ganization and function88–90. This new understand-
ing of conservation laws in living systems opens av-
enues for exploring how tissues and organs nego-
tiate space, resources, and functional roles within
multicellular organisms. This framework challenges
the conventional notion of cell competition as solely
amicroscopic phenomenon, suggesting that it is also
mirrored and amplified at the tissue and organ lev-
els.

CONCLUSIONS
Despite the dramatic rise of artificial intelligence
technologies and deep learning approaches, there is
currently no place for their application in tissue en-
gineering, partly due to the lack of solutions for gen-
eral requirement issues. Before artificial intelligence
models can be applied to novel and groundbreaking
ideas in this field, they need to be thoroughly de-
scribed through logical constructs, and multitested
on large datasets.
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