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ABSTRACT

Background: Immune checkpoint proteins such as PD-1 and CTLA-4 play pivotal roles in tumour
immune evasion. Our previous in vitro studies demonstrated upregulation of Pdcd 1 and Ctla4 mRNA
in the acquired radioresistant murine breast cancer cell line EMT6™R-M! This study aimed to eval-
uate their gene expression in vivo and assess the impact of gamma-ray irradiation on tumour pro-
gression. Methods: Two in vivo experiments were conducted using a mouse xenograft model
subcutaneously implanted with either parental EMT6 or EMT6RR-M! mammary carcinoma cells. In
Experiment 1, levels of Pdcd1, Cd274, and Ctla4 mRNA were quantified by real-time PCR from tu-
mours relative to control groups in both models. Mice in both control and treated groups were
sacrificed on day 19 post-inoculation (5 days post-irradiation for treated groups), and tumour ori-
gin was validated by determining the expression of epithelial marker E-cadherin (Cdh1) and mes-
enchymal marker N-cadherin (Cdh2). In Experiment 2, tumour volume was measured weekly to
assess treatment response relative to controls. Mice were sacrificed if they lost >10% of their body
weight or showed signs of stress or ulceration. Results: Pdcd expression was significantly higher
in EMT6"*-M! tumours compared to parental EMT6 tumours (p<0.0001), with no significant differ-
ence observed for Ctla4. Gamma-ray irradiation reduced Pdcd1 expression in EMT6R*-" tumours
(p<0.01) but not in EMT6. Conversely, Ctla4 expression increased significantly in irradiated EMT6
tumours (p<0.01) but remained unchanged in EMT6F-"/ Tumour growth was markedly faster
in EMT6 tumours than in EMT6™-M/ tumours from week 2 onward (p<0.0001). Irradiation signif-
icantly reduced tumour volume in EMT6 tumours at weeks 3 (p<0.01), 4, and 5 (p<0.001), while
EMT6-M! tumours showed no reduction. Conclusion: Gamma-ray irradiation differentially mod-
ulated Pdcd1 and Ctla4 expression in radioresistant (EMT6R-M) and parental (EMT6) tumour mod-
els. The absence of tumour reduction in EMTER-M! tumours suggests inherent radioresistance.
These findings provide preliminary insights into the link between immune checkpoint regulation

and radiation response in breast cancer.
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INTRODUCTION

Cancer remains one of the leading threats to human
health and is associated with a reduction in life ex-
pectancy. Studies have shown that the prevalence
of cancer and mortality rates are rising worldwide,
as per a recent report from the Global Cancer Re-
port, which indicated that approximately 14 million
new cases were diagnosed in 2022'. Additionally,
the report projected that cancer cases will increase
by up to 60% over the next 20 years2. Advances in
early detection, screening, diagnosis, and treatment
have contributed to a modest decline in cancer mor-
tality 3; however, comprehensive worldwide cancer
data indicate that further research is needed to re-

duce cancer mortality >4. Cancer treatment involves
a variety of approaches, including surgery, radiation
therapy, chemotherapy, immunotherapy, targeted
therapy, stem cell transplantation, and multidisci-
plinary strategies®.

Radiotherapy (RT) primarily induces DNA dam-
age, leading to activation of the DNA damage re-
sponse (DDR). The intricate DDR pathway main-
tains genome stability by activating proteins respon-
sible for detecting, signaling, and transmitting dam-
age signals to effector proteins that regulate cell cy-
cle progression, arrest, DNA repair, and apoptosis;
this is one of the biological effects of ionizing ra-
diation (IR) on normal cell function®. Over half of
cancer patients undergo RT, with at least 40% ex-
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periencing clinical benefits. However, treatment re-
sistance remains a significant obstacle that reduces
the effectiveness of radiotherapy’. Various signal-
ing pathways linked to tumour development have
provided deeper insights into cancer biology, lead-
ing to the development of new targeted therapies.
Multiple signaling pathways, including the phos-
phoinositide 3-kinase (P13K/AKT), JAK/STAT, trans-
forming growth factor beta (TGFf), Wnt, and NF-
kB signalling pathways, are often interconnected
in cancer research. Numerous studies have found
that alterations in the PI3K/AKT pathway are com-
monly linked to cellular transformation, carcino-
genesis, cancer development, and treatment resis-

tance®

. In our previous study, we reported an in-
crease in Ctla4 and Pdcd1 expression, which may
contribute to acquired radioresistance in an in vitro
model via the PI3K/AKT and JAK/STAT pathways®.
Research has shown that the PI3K/AKT signalling
pathway is frequently overactivated in cancer cells
resistant to radiation, chemotherapy, and hormonal
therapy '°. Additionally, evidence suggests that dual
targeting of PI3K and mTOR may reduce radiation
resistance in various cancer cell types, both in vitro
and in vivo xenograft models'".

The PI3K/AKT signalling pathway has been pro-
posed to play a key role in the development of ra-
diotherapy resistance, making it a promising target
for further investigation. This pathway regulates
several hallmarks of cancer, including cell survival,
metastasis, and metabolism. It is also involved in tu-
mour microenvironment remodeling, affecting an-
giogenesis and recruitment of inflammatory cells 2.
A variety of chromosomal alterations, such as muta-
tions in PIK3CA, phosphatase and tensin homolog
(PTEN), AKT, TSC1, and mechanistic target of ra-
pamycin (mTOR), can lead to abnormal activation of
the PI3K/AKT pathway '3. The PI3K/AKT pathway is
frequently mutated and activated in cancer 4.

The Janus kinase (JAK)/signal transducer and ac-
tivator of transcription (STAT) pathway is another
critical signalling pathway involved in cellular re-
sponses to cytokines and growth factors'>. The
JAK/STAT pathway has been identified as mediat-
ing resistance to radiotherapy in various cancers '°.
While acquired resistance arises from activation
of alternative signalling pathways, de novo resis-
tance results from genetic changes in receptors or
downstream signalling molecules in the JAK2/STAT3
pathway 7. Previous studies have highlighted the
JAK/STAT pathway as a crucial mediator of radiore-

sistance '°.

The PI3K/AKT and JAK/STAT pathways play impor-
tant roles in mediating cellular responses to radia-
tion and immune checkpoint blockade. Crosstalk
between these pathways and CTLA-4 signaling can
influence tumour radioresistance and immune eva-
sion, thereby impacting the efficacy of radiation
therapy and immunotherapy. Understanding the
interplay between these pathways is crucial for de-
veloping effective therapeutic strategies to over-
come treatment resistance and improve patient out-
comes in cancer.

Building on our previous in vitro findings (Sham
et al,, 2023), which reported increased PD-1 and
CTLA-4 expression in the radioresistant EMT6RR-M)!
cell line, the present study extends this work
into an in vivo setting to examine whether simi-
lar immune-checkpoint modulation occurs in the
Although the
EMT6RR-MI model shares features with the ex-
isting BALB/c-EMT6 models, it represents a sta-
bly acquired, fractionation-induced radioresistant

whole-tumour microenvironment.

phenotype, offering an opportunity to compare
immune-regulatory responses between resistant
and non-resistant tumours. By assessing radiation-
associated changes in immune-checkpoint expres-
sion in this more physiologically relevant con-
text, the study provides additional insight into
how tumour-immune interactions may influence
radioresistance and could inform future strategies
combining radiotherapy with immunomodulatory

approaches.

MATERIALS AND METHODS
Study Design

This study consisted of two experiments. Exper-
iment 1 assessed the expression levels of Pdcd],
Cd274, and Ctla4 in control and treatment groups
from both EMT6 and EMT6RR-M! tumour-bearing
mouse models at 5 days post-irradiation (acute
phase). Tumour identity was confirmed by evalu-
ating the expression of the mesenchymal marker N-
cadherin (Cdh2) and the epithelial marker E-cadherin
(Cdh).
gamma-ray irradiation on tumour progression in

Experiment 2 evaluated the impact of

both models for up to 35 weeks post-inoculation,
until tumours reached 10% of body weight, or until
mice exhibited signs of distress or ulceration (Fig-
ure 1).

Cell lines

EMT6 cells were procured from ATCC, while
EMT6RR-MI! cells were derived from radioresistant
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Mouse Bearing Tumour Model
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Figure 1: Study design of the mouse-bearing tumour models. The study consisted of two experimental phases:
Experiment 1 and Experiment 2, each involving EMT6 (parental) and EMT6RR-M! (radioresistant) tumour-bearing
mouse models. In each experiment, mice were divided into control and treated group

sublines selected from EMT6 lines by subjecting
them to 2 Gy gamma-ray irradiation in eight frac-
tions, as described by Sham et al. (2023)°. Both cell
lines were cultured at 37°C in 5% CO2 and main-
tained in DMEM supplemented with 10% FBS and
penicillin-streptomycin. Cells were detached using
Accutase during passaging. Both cell lines were of
the same passage number.

Animal model and cell inoculation

All animal experiments were conducted in accor-
dance with the Universiti Teknologi MARA (UiTM)
Research Ethics Committee (REC) ethical guide-
lines, following the ARRIVE 2.0 recommendations,
UITM
Prospective sample-size calcu-

and were approved (Ethical Approval No.
CARE 316/2020).
lation (n=6 per group) was performed based on
preliminary data using a power analysis (a=0.05,
Forty-eight healthy female BALB/c
mice (18-22 g) were purchased from the Laboratory
Animal Facility (LAFAM), Faculty of Pharmacy, Uni-
versiti Teknologi MARA (UiTM) Puncak Alam, and
maintained under specific pathogen-free conditions.

power=0.8).

Mice were acclimatized to handling procedures prior
to experimentation. Mice were randomly assigned
to groups using simple randomisation to minimise
selection bias. Tumour-bearing mouse models were
established as described by Ibahim et al. (2016)8.
Mice were shaved on the left hind legs before in-
oculation. The BALB/c mice were randomised into
eight groups, with four groups receiving inocula-
tion with either 1 x 106 = 10° proliferative EMT6 or
EMT6RR-MI! cells. Each tumour-bearing model com-
prised two subgroups: control (Groups 1, 2, 5, 6) and

treatment (Groups 3, 4, 7, 8) per experiment. For
Experiment 2, tumour growth was monitored until
week 5 post-inoculation in control groups and un-
til week 8 in treatment groups (Figure 2). Humane
endpoints were applied throughout the study, in-
cluding euthanasia when tumour size exceeded 10%
of body weight, showed signs of ulceration, or dis-
played physical distress.

Animal irradiation

Tumours on the mice’s hind legs underwent irradi-
ation using the Gamma Cell 220 Excel (MDS NOR-
DION/GC 220 E) at the Department of Nuclear Sci-
ence, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia. In all treatment groups of Ex-
periments 1 and 2, irradiation commenced on day
10 post-inoculation, delivering 2 Gy per fraction for
eight consecutive fractions. Before irradiation, mice
were anaesthetised via intraperitoneal injection of
ketamine and xylazine. Each mouse was positioned
on its side, with the tumour secured in a strainer
and placed within a dedicated lead shield during the
irradiation procedure '°. Post-irradiation, anaesthe-
sia recovery was closely monitored, and mice were

returned to their cages.

Tumour collection

In Experiment 1, mice in both control and treatment
groups were euthanized at five days after the final
irradiation dose using cervical dislocation. In Exper-
iment 2, control group mice were euthanized when
the tumour exceeded 10% of body weight, while
treatment group mice were euthanized at week 8
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Figure 2: Experimental timeline of EMT6 and EMT6RR_MJI tumour-bearing mouse models following gamma-ray
irradiation. Experiment 1 examined the acute phase response, where EMT6 and EMT6R-M)! tumour-bearing mice
received eight cycles of 2 Gy irradiation starting on Day 7, and tumours were harvested five days after the final dose
for qPCR analysis of Ctla4, Pdcd1 and Cd274. Experiment 2 assessed tumour progression under similar irradiation
conditions, with tumour growth monitored weekly until Week 8 or when tumours exceeded 10% of body weight,

whichever occurred first.

post-inoculation (Figure 2). Euthanasia was per-
formed by intraperitoneal administering of a mix-
ture of ketamine and xylazine at a dose of 0.1 ml per
10 g body weight. Once unconscious, mice were eu-
thanized by cervical dislocation, and tumours were
promptly excised and weighed. Tumour samples

were then stored at -80°C for further analysis.

RNA extraction and qPCR

Total RNA was extracted from tumour samples of
mice using a Macherey—Nagel RNA extraction kit
(MN, Germany), following the manufacturer’s in-
structions. The extracted RNA was quantified and
purity was assessed for contamination using a Nan-
oDrop spectrophotometer (ND-1000, Thermo Fisher
Scientific, USA). Reverse transcription and cDNA
synthesis, one-step qPCR, were performed using the
Bioline SensiFAST™ SYBR® No-ROX kit, following
the manufacturer’s instructions (Bioline, UK). Gene
expression analysis of the selected genes (Cdhi,
Cdh2, Pdcd1, Cd274, and Ctla4) was conducted us-
ing the Bio-Rad CFX96 Real-Time PCR instrument
(Bio-Rad, USA). The qPCR reaction mixture compo-
sition and thermal cycling conditions are listed in
Tables 1 and 2. Gene expression levels were calcu-
lated as fold-changes using the AACT method rela-
tive to the housekeeping genes Gapdh and Actb, in
accordance with MIQE guidelines for the use of mul-
tiple internal controls to improve normalization ac-

curacy?’. The forward and reverse primer sequences
are listed in Table 3.

Table 1: The composition of gPCR mix per reaction

Components Volume Final
concentration
2x SensiFAST™ 10 pL 1x
SYBR® No-ROX
One-Step Mix
Forward Primer 0.8 uL 400 nM
Reverse Primer 0.8 uL 400 nM
Reverse transcriptase 0.2 uL o
RiboSafe RNase 0.4 uL -
Inhibitor
H,O 3.8 uL =
Template 4L =
Final volume 20 pL

Tumour measurement

Once tumour growth was detected, the width and
length of the tumour were measured three times us-
ing a digital calliper. Prior to each measurement,
the fur around the left hind leg was shaved to facili-
tate the process. The mean width and length of the
tumour were then utilized to calculate the tumour
volume using the following equation adapted from
a previous study?'.

Tumour Volume = (W (2) x L) +2
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Table 2: List of cycle steps in qPCR

Step Temper- Time Number
ature of cycles
Reverse 45°C 10 1
transcription minutes
Polymerase 95°C 2 1
activation minutes
Denaturation 95°C 5 40
seconds
Annealing 60°C 10 40
seconds
Extension 72°C 5 40
seconds

Statistical analysis

Multiple endpoints were evaluated in this study.
Statistical analyses were performed in GraphPad
Prism 8 using t-tests and one-way ANOVA with sig-
nificance set at p < 0.05. Although more appropriate
methods—such as multiple-comparison corrections
(e.g., Holm-Sidak) and repeated-measures analyses
for longitudinal data—would normally be required,
the raw dataset is no longer available for re-analysis.
Results should therefore be interpreted with cau-
tion, and this limitation has been clearly acknowl-
edged.

RESULTS

Confirmation of tumour development de-
rived from EMT6 cells.

Through analysis of Cdh1 and Cdh2 gene expres-
sion in tumour sections, tumour development was
confirmed to originate from parental EMT6 or
EMT6RR-MI! cells. The overexpression of Cdh2 and
downregulation of CdhT served as a characteristic
marker of EMT cell proliferation (Figure 3). Con-
sistent results were observed in tumour tissues de-
rived from both parental EMT6 and EMT6RR-M)!
cells, suggesting that the proliferative state of EMT
cells contributes to the formation of both tumour tis-

sues.

Pdcd1 increases in EMT6RR-M! yntreated
mouse bearing tumour model.

Based on our in vitro data, the activation of radiore-
sistance in EMT6RR-MJ! cells was hypothesized to be
mediated by Ctla4 and Pdcd1. The potential link
between Pdcdl, Cd274 and Ctla4 with radioresis-
tance was confirmed by investigating the expression
of CT Pdcd1, Cd274 and Ctla4 in tumour sections
of EMT6RR-M)! _and parental EMT6-treated groups

five days post-irradiation compared to the respec-
tive control groups.
Pdcd-1

expression

There was a significant increase in
(****p<0.0001) and PD-L1 (p<0.05)
in the EMT6RR-MI control group at the initial
time point compared to parental EMT6 cells, while
no significant difference was observed in Ctla-4
expression. In the parental EMT6-treated group,
Ctla-4 expression was significantly higher than in
the control group (p<0.01), but there were no sig-
nificant changes in Pdcd7 and Cd274 expression. In
contrast, in the EMT6RR-MI! groups, the expression
of PD-1 was significantly reduced in the treated
group compared to the control group (p<0.01).
Although Ctla4 and Cd274 expression showed
a decreasing trend, no significant changes were
observed. Interestingly, the expression levels of
Pdcd1 and Cd274 in the EMT6RR-M!_treated group
were significantly higher than those in the parental
EMT6 group. These findings suggest that exposure
of the parental tumour to gamma-ray irradiation
led to an increase Pdcd1 expression, as observed in

the acquired radioresistance EMT6RR-M! (

Figure 4).
Tumour growth was reduced in the treated
parental EMT6 but not in the EMT6RR-MJ!

mouse-bearing tumour model

Tumour growth in mice bearing parental EMT6 and
EMT6RR-MI control groups was fully accelerated
until week five. The tumour volume in the parental
EMT6 group was higher than that in the EMTRR-M)!
control group beginning from weeks two until five
(#p<0.0001). Mice from both groups were sacrificed
after week five because their tumour volume was
more than 10% of their body weight. After eight
days of fractionated radiation treatment in both
models, tumour growth increased in both groups.
The tumour growth in the treated-parental EMT6
group was significantly regressed compared to the
control from weeks three to five (**p<0.01 at week
3, "**p<0.001 at weeks 4 and 5). However, in the
EMTERRMI! group, despite receiving treatment, the
tumour volume was not different from that of the
control group, indicating that the cells were radiore-

sistant (Figure 5).

DISCUSSION

This study extends our previous in vitro observa-
tions (Sham et al., 2023) by confirming, for the first
time in vivo, that Pdcd1 and Ctla-4 are differentially
regulated in radioresistant versus parental EMT6 tu-
mours following gamma-ray exposure. While prior
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Table 3: The forward and reverse primer sequences for the selected genes

NCBI gene ID Genes  Primer Primer Sequence
56249 Actb Forward 5’-3° ATGACCCAAGCCGAGAAGG
Reverse  5’-3° CGGCCAAGTCTTAGAGTTGTTG
14433 Gapdh  Forward 5’-3> AGGTCGGTGTGAACGGATTTG
Reverse  5°-3' TGTAGACCATGTAGTTGAGGTCA
60533 Cd274  Forward 5’-3° GCTCCAAAGGACTTGTACGTG
Reverse 5’-3’ TGATCTGAAGGGCAGCATTTC
18566 Pdcd1  Forward 5’-3’ACCCTGGTCATTCACTTGGG
Reverse 5-3’CATTTGCTCCCTCTGACACTG
12477 Ctla4  Forward 5’-3’ TTTTGTAGCCCTGCTCACTCT
Reverse 5’-3> CTGAAGGTTGGGTCACCTGTA
12550 Cdh1  Forward 5’-3> CAGGTCTCCTCATGGCTTTGC
Reverse 5’-3° CTTCCGAAAAGAAGGCTGTCC
12558 Cdh2  Forward 5’-3° CTCCAACGGGCATCTTCATTAT
Reverse 5’-3> CAAGTGAAACCGGGCTATCAG

Abbreviations: Cdh1, E-cadherin; Cdh2, N-cadherin; Pdcd1, programmed cell death
1; Cd274, PD-L1; Ctla4,
glyceraldehyde-3-phosphate dehydrogenase; Actb, -actin.

RELATIVE EXPRESSION LEVEL

Cdh2

cytotoxic T-lymphocyte-associated protein 4; Gapdh,

E= Group 1: Control Parental EMT6
[N Group 3: Control EMT6RRM!

Cdh1

GENES

Figure 3: Relative expression levels of Cdh7 and Cdh2 in parental EMT6 and EMT6RR-M)! cells. In contrast to Cdh2,
Cdh1 shows downregulated expression in both tumour models (n=3, mean * s.d)
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Figure 4: Effects of gamma-ray post-irradiation on Ctla-4, Pdcd1, and Cd274 genes in EMT6RR-M)- and EMT6-
treated groups compared to the respective controls. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001 (n=6, mean
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Figure 5: Progression of tumour growth in mice injected with either parental EMT6 or EMT6RR-M!! cells for up to
8 weeks. Despite the increase in tumour growth in mice injected with EMT6RR-MW! cells compared to the other

groups, no significant difference was observed compared to the control EMT6RR-M)! group. #p<0.0001, **p<0.01,
**¥p<0.001, (h=6, mean = s.d).
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murine breast cancer models of radioresistance have
focused largely on DNA repair, apoptosis, and sig-
nalling pathways, our findings introduce a novel im-
munoregulatory dimension to the mechanism of ra-
dioresistance. The divergent modulation of PD-1
expression between resistant and non-resistant tu-
mours indicates that immune checkpoint adapta-
tion may represent a key distinguishing feature of
the radioresistant phenotype. This not only en-
hances mechanistic understanding but also identi-
fies PD-1 as a potential biomarker and therapeutic
target in resistant breast cancer.

Furthermore, by integrating checkpoint profiling
with tumour growth analysis, this study estab-
lishes a comprehensive in vivo platform for evaluat-
ing radio-immunomodulatory interactions—an as-
pect largely absents from prior murine breast can-
cer models. The work therefore provides both con-
ceptual and methodological novelty that extends be-
yond our previous in vitro research and contributes
meaningfully to the evolving framework of radio-
immunobiology.

This study did not include an a priori power anal-
ysis, and the use of six mice per group may have
reduced the power to detect small to moderate ef-
fects, particularly in gene expression analyses where
inter-individual variability can be substantial. The
findings should therefore be interpreted with cau-
tion, and validation using larger sample sizes and
appropriately powered experimental designs is rec-
ommended for future work.

Cancer metastasis remains a leading cause of
cancer-related death, with primary tumour cells
spreading by infiltrating blood vessels, invading the
surrounding microenvironment, and migrating to
distant organs to form secondary tumours??. A
key process driving metastasis in many epithelial
cancers is the epithelial-to-mesenchymal transition
(EMT), where cancer cells undergo genetic repro-
gramming, transforming from a non-motile, epithe-
lial phenotype to a more migratory, mesenchymal-
like phenotype. This transformation enhances the
tumour’s malignancy and invasiveness®. A hall-
mark of EMT is the downregulation of epithelial
cadherin gene (CdhT), and upregulation of neu-
ral cadherin gene (Cdh2)**. E-cadherin and N-
cadherin proteins are calcium-dependent cell ad-
hesion molecules that regulate cell-cell adhesion
and migration and tumour invasiveness. Loss of
E-cadherin-mediated adhesion plays a vital role
in the progression of epithelial tumours from be-
nign to invasive forms?>. Successful creation of the
xenograft model using EMT6 cells was confirmed

analysing the expression of the Cdh1 and Cdh2 ep-
ithelial markers. Cdh2 was upregulated, whereas
the Cdh1 was downregulated. Cdh2 serves as a
marker for mesenchymal cells?®, whereas Cdh1is a
marker for epithelial cells?®. Therefore, the overex-
pression of Cdh2 and downregulation of CdhT sup-
port the idea that the radioresistant tumour origi-
nated from EMT6 cells.

PD-1 proteins and its ligand, PD-L1 which are part
of the immunoglobulin superfamily, serve as crucial
inhibitory checkpoint proteins that regulate T cell
signalling. In resting immune cells, Pdcd1 expres-
sion is low?’. However, Pdcd1 overexpression helps
tumour cells evade cytotoxic T lymphocytes and the
development of anti-PD-1/PD-L1 antibodies has be-
come a central focus of cancer immunotherapy?®.
Overexpression of Cd274 mRNA has been shown to
predict clinical outcomes in patients with low-grade
glioma following radiotherapy??, and its role in im-
mune response modulation is further evidenced by
the development of autoimmune diseases in mice
lacking Pdcd1 expression. Among breast cancer pa-
tients, a significant proportion (55-59%) exhibit over-
expression of Pdcd1/ Cd274 mRNA. According to
Chen et al. (2016), PD-L1 activates an inhibitory sig-
nalling pathway that prevents T cell activation®'.
This blocked immune-mediated cell death allows
tumour cells to proliferate and survive within the
tumour microenvironment32 contributing to treat-
PD-1 and PD-L1, as well as the
CTLA-4 immune checkpoint pathways help main-

ment resistance.

tain peripheral tolerance by reducing T cell activa-
tion. Cancer cells utilize these pathways to create an
immunosuppressive environment, enabling tumour
growth and proliferation rather than immune sys-
tem destruction3. These findings align with these
current studies, which showed increased Pdcd1 and
Cd274 expression in the EMT6RR-M! tumour model.
CTLA-4 is a cell-surface receptor protein that in-
hibits T cells from transmitting immunological sig-
nals®. It functions alongside regulatory T cells
(Tregs) as part of a complementary, overlapping im-
mune tolerance mechanisms. The suppressive ac-
tivity of Tregs is reduced when Ctla4 mRNA expres-
sion is impaired 333¢. CTLA-4 competes with its ho-
molog CD28 for binding to the ligands CD80/CD86,
thereby interfering with CD28-mediated T cell ac-
tivation and decreasing the immune response?’.
Overexpression of Ctla4 in four different breast can-
cers and tumorigenic cell lines suggests its role in re-
sistance to radiotherapy 3. Accordingly, Ctla4 over-
expression has been linked to poor survival out-

38

comes in patients with breast cancer Interest-

ingly, a better prognosis has been associated with
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Ctla4 overexpression in tumour-infiltrating lympho-
cytes (TILs), highlighting the critical role of CTLA-
4 protein in helping tumours escape immune re-
sponses 30,

Radioresistance in cancer cells can be affected by
various mechanisms, including reoxygenation, DNA

repair, apoptosis, and proliferation“C.

The cur-
rent study employed a fractionated radiation dose
to allow tumour reoxygenation between fractions,
thereby increasing tumour sensitivity to radiother-
apy*!. The results indicated that mice with radiore-
sistant EMT6 cells (EMT6RR-M) were unaffected by
irradiation, whereas parental EMT6 tumours under-
going fractionated irradiation showed growth re-
gression. A previous study showed that higher ra-
diation doses with fewer fractions (10 Gy/ 2 frac-
tion per week) could reduce tumour growth, in-
crease anti-tumour immunoreactivity, and limit de-
layed radio-necrosis*?. Accordingly, mesenchymal
stem cells restrict growth and promote apoptosis by
inhibiting the proliferation of cancer cells*>. Mes-
enchymal cells also improve the effects of radio-
therapy on malignancies, most likely by reducing
tumour cell proliferation and enhancing cancer cell
death*. Taken together, the regression of tumours
in the treated parental EMT6 cell model was due to
(i) higher fractional irradiation doses that increased
tumour control and immunoreactivity, as well as (ii)
the presence of mesenchymal cells in the tumour.

The contrasting responses between parental EMT6
and EMT6RR-MI! cells suggest potential mechanisms
like post-radiotherapy hypoxia and early acquisi-

tion of radioresistance in the latter?'.

A previous
study reported that the effectiveness of radiother-
apy in hypoxic tumours decreases as cancer cells
adapt to hypoxic conditions and become more re-

sistant to radiation?.

Tumour cells may escape
the radiation effects by migrating and penetrating
the vessels. Although this study did not measure
hypoxic markers, it has been shown that irradia-
tion can cause hypoxia in tumours which hampers
immune cells and causes immune suppression and
poor prognosis after radiation therapy“®. Irradia-
tion induces radioresistance in cancer cells of EMT
tumours through multiple signalling pathways and
the tumour microenvironment (TME)#’. Fraction-
ated irradiation can upregulate Cd274 mRNA ex-
pression and cause changes in the tumour microen-
vironment*. This is consistent with the results of
the present study, where EMT6RR-M)! tumour cells
showed increased Pdcd7 and Cd274 expression, re-
sulting in increased tumour growth after irradia-

tion. Targeting these markers might enhance the

radiosensitivity in tumour tissue. Another factor is
the presence and increase of EMT cells in tumours,
which promotes cancer-associated fibroblast forma-
tion in tumours. Radiation-induced mesenchymal
transition can lead to the abnormal recruitment of
pericytes in the tumour vasculature during tumour

Radiation-induced
GRR_MII

regrowth after radiotherapy .
mesenchymal transition, observed in EMT
cells, contributes to acquired radioresistance, em-
phasizing the importance of inhibiting this process
to enhance radiotherapy efficacy, mainly through

immune response promotion. >’

CONCLUSION

Pdcd1 expression was elevated in the acquired ra-
dioresistant EMT6RR-MI! cells, with gamma-ray ir-
radiation resulting in a reduction of Pdcd1 levels.
In contrast, Pdcd1 and Ctla4 expression were lower
in parental EMT6 cells but increased following ir-
radiation. Gamma-ray irradiation did not signif-
icantly affect tumour volume in the EMT6RR-MI
model, likely reflecting the inherent resistance of
these cells. Overall, this study provides preliminary
evidence suggesting that radiation may modulate
immune checkpoint expression differently in resis-
tant and non-resistant tumour models. These find-
ings highlight potential interactions between im-
mune regulation, radiation response, and tumour
microenvironment dynamics that warrant further

mechanistic and functional investigation.
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