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Inflammation demystified: An in-depth comprehensive review

Noor Jameel1, Aradhana Dwivedi1, Mohammad Khushtar1, Md. Faheem Haider1, Md. Nematullah1, Md.
Azizur Rahman1,*

ABSTRACT
The immune system responds to viral pathogens, damaged cells, and diverse irritants through a
complex, highly regulated biochemical cascade known as inflammation. When dysregulated, in-
flammation becomes a hallmark of numerous chronic disorders, including autoimmune diseases,
cancer, and cardiovascular diseases. Physiologically, this defence mechanism eliminates damaged
cells, neutralises the primary injurious stimulus, and initiates tissue-repair pathways. The objective
of the present review is to synthesise contemporary evidence regarding inflammation and its asso-
ciated pathologies. A comprehensive literature search was conducted across peer-reviewed jour-
nals, textbooks, and electronic databases—including PubMed, Scopus, Web of Science, ScienceDi-
rect, and Google Scholar—to collate relevant data. Current information on inflammation and anti-
inflammatory pharmacotherapies has been assembled. The roles of immune cells and signalling
molecules (e.g., cytokines and chemokines) in precipitating inflammatory responses are critically
examined. Moreover, we describe the molecular mechanisms underlying chronic inflammation, its
contribution to disease pathogenesis, emerging therapeutic strategies, novel inflammatory targets,
and conventional treatment with non-steroidal anti-inflammatory drugs (NSAIDs). The review also
underscores the promise of precision and personalised medicine in optimising anti-inflammatory
interventions. Collectively, this synthesis is intended to assist researchers and clinicians in advanc-
ing anti-inflammatory drug development and improving clinical outcomes in inflammation-related
diseases.
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INTRODUCTION
Inflammation is an immune-mediated, nonspecific
host response to external stimuli or tissue injury.
It involves immune cells, soluble molecular medi-
ators, and the microvascular network, and repre-
sents one of the principal mechanisms by which the
host eradicates pathogens, repairs damaged tissue,
removes cellular debris, and re-establishes home-
ostasis. Both endogenous triggers such as ischemia
or atherosclerosis and exogenous triggers such as
microbial infection can initiate the response. The
immune system normally maintains a balance be-
tween pro- and anti-inflammatory mediators; fail-
ure of anti-inflammatory signals to restrain pro-
inflammatory pathways can lead to persistent in-
flammation. Aging dysregulates both the innate
and adaptive immune compartments, producing a
state of chronic, low-grade inflammation1.
Inflammation may be precipitated by thrombotic is-
chemic stroke, immune dysregulation, malignancy,
exposure to chemicals such as tobacco smoke,
dioxins, or polycyclic aromatic hydrocarbons; by
physical insults including hemorrhagic stroke or
trauma; and by neurological conditions such as

Alzheimer’s disease and depression. In addition, in-
fections caused by bacterial, fungal, viral, or proto-
zoan pathogens invariably evoke inflammatory re-
sponses 2.

Inflammation represents a common pathogenic de-
nominator across chronic diseases. Its involvement
is well established in endocrine disorders, autoim-
mune conditions such as rheumatoid arthritis, gout,
inflammatory bowel disease, and in hypersensitiv-
ity reactions such as anaphylaxis, as well as in en-
vironmentally induced diseases that follow asbestos
exposure or smoke inhalation. Metabolic disorders,
notably diabetes mellitus, also exhibit an inflamma-
tory milieu. Over the past three decades, evidence
has accumulated that an even broader spectrum
of diseases—including myocardial ischemia, acute
cerebrovascular events, chronic Alzheimer’s disease,
and chronic arterial or venous insufficiency—display
inflammatory signatures at the cellular and molec-
ular levels 3.

Activation of immune and parenchymal cells eradi-
cates pathogens and promotes tissue repair, thereby
protecting the host from viruses, bacteria, toxins,
and other insults. Across evolution, inflammation
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in inflammation-associated disorders. It discusses
biomarkers of acute and chronic inflammation, their
roles in pathogenesis, established and emerging
therapeutic strategies, and prospective molecular
targets.

Acute Inflammation
Injury-induced release of pro-inflammatory cy-
tokines can escape the local milieu and enter the
circulation, generating a “cytokine storm”. Tu-
mour necrosis factor-α is a pivotal component of
this loop. Systemic cytokine signalling activates
organ-specific receptors, eliciting a coordinated
acute-phase response, most prominently in the
liver. Hepatocytes up-regulate acute-phase proteins
such as lipopolysaccharide-binding protein, com-
plement component 3, haptoglobin, serum amyloid
A, C-reactive protein, fibrinogen, and ceruloplas-
min, while down-regulating cortisol-binding glob-
ulin, zinc and iron transporters, albumin, transfer-
rin, transthyretin, and retinol-binding protein. Ac-
tivation of the renin–angiotensin–aldosterone sys-
tem further sustains low-grade inflammation via an-
giotensin II and aldosterone, which drive oxidative
stress, endothelial dysfunction, and immune-cell re-
cruitment 5.

Chronic Inflammation
Inflammation that persists beyond its physiologi-
cal purpose or arises without a discernible stimu-
lus is defined as chronic. It commonly results from
unresolved infections, either because pathogens
evade immunity or because persistent antigens over-
whelm host defences; however, refractory chemical
or physical insults and genetic predisposition also
contribute. Transition from acute to chronic inflam-
mation is orchestrated by sustained production of
cytokines (e.g., TNF-α, IL-1β, IL-6, CXCL8), contin-
uous activation of macrophages, neutrophils, and
T cells, defective resolution programmes, tissue re-
modelling driven by transforming growth factor-β,
and altered cell-death pathways. Chronic inflam-
mation perturbs metabolism, inducing insulin resis-
tance, adipose accumulation, and dyslipidaemia; it
simultaneously promotes systemic oxidative stress,
mitochondrial dysfunction, and a perpetuating cy-
tokine milieu, underpinning disorders such as obe-
sity, type 2 diabetes, cardiovascular disease, and
neurodegeneration. In the central nervous system,
persistent inflammation fosters protein aggregation
and compromises the blood–brain barrier, exacer-
bating neuronal injury and neurodegenerative dis-
eases 6.

has been accompanied by metabolic and neuroen-
docrine adaptations that conserve energy and al-
locate substrates to the immune system, with the 
specific pattern depending on the intensity and sys-
temic spread of the response. The resultant “sick-
ness behaviours” constitute energy-saving strate-
gies integral to inflammatory biology, underscoring 
the robustness of this defence system4. 
Microcirculatory phenomena exemplify these prin-
ciples. The tissue site, the affected o rgan, and 
the nature and severity of injury—whether mechan-
ical, infectious, chemical, thermal, radiogenic, or 
ischemic—critically determine the qualitative fea-
tures of the ensuing inflammatory response4.

Isolated endothelial injury
A highly focused laser burn provides a precise ex-
perimental model for interrogating inflammation at 
near-single-cell resolution. Laser-induced microvas-
cular endothelial damage results in rapid platelet ad-
hesion to the denuded surface and to each other, 
with minimal entrapment of erythrocytes; a platelet 
thrombus therefore forms swiftly at the injury site. 
Depending on lesion size, the thrombus may sta-
bilise and subsequently detach, or it may expand 
to occlude the microvessel, whereupon detachment 
can lead to fragmentation4.

Parenchymal burn injury
When the laser is applied to a confined tissue re-
gion encompassing multiple cell layers, a different 
cascade unfolds. Neighbouring microvessels—even 
if not directly exposed to the laser—exhibit increased 
permeability. Circulating leukocytes adhere to the 
intact endothelium of upstream vessels and subse-
quently migrate chemotactically toward the burn lo-
cus 4.

Shock physiology
Circulatory shock—whether precipitated by massive 
haemorrhage, extensive burns, or severe trauma—
elicits a distinct systemic inflammatory cascade. 
Organs spared from the primary insult may 
nonetheless be damaged by downstream inflamma-
tory mediators; the intestine and pancreas are ma-
jor sources of such effector s ignals. I ntestinal in-
flammation can propagate systemically and injure 
remote organs, including vascular beds such as the 
superior mesenteric artery that were not part of the 
initiating event3.
This review summarises current knowledge on in-
flammation and anti-inflammatory pharmacother-
apy, with the goal of optimising clinical outcomes
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METHODS
A comprehensive literature search of scientific jour-
nals, books, and electronic sources was conducted.
Articles were retrieved from databases including
PubMed, Scopus, Web of Science, ScienceDirect,
and Google Scholar, covering the period from 2000–
2024. The search keywords were “inflammation,”
“arthritis,” “gout,” “anti-inflammatory drugs,” and
“NSAIDs.” Studies providing relevant information
for the present manuscript were included, whereas
all other publications were excluded.

Pathogenesis of Inflammation
Since the brain does not mount classical allergic re-
actions and IgE cannot cross the blood-brain bar-
rier (BBB), it is therefore unsurprising that mast
cells, although distributed systemically, normally
lack surface expression of the high-affinity IgE re-
ceptor (FcεRI). Adaptable mast cells are capable of
“selective” mediator release without complete de-
granulation, thereby modulating immune responses
and contributing to inflammatory disorders without
precipitating catastrophic anaphylaxis. They can se-
crete specific cytokines (TNF-α, IL-4, IL-5, IL-13) or
growth factors (vascular endothelial growth factor,
fibroblast growth factor) to influence local immu-
nity by promoting tissue repair in chronic inflam-
mation or adjusting the balance between pro- and
anti-inflammatory signals. Such functional plastic-
ity renders mast cells less prone to desensitisation
and enables a sustained contribution to chronic in-
flammatory diseases, including rheumatoid arthritis
and inflammatory bowel disease (IBD)7.

Molecular Mechanisms of Inflammation
Inflammation, while fundamental to host defence
against injury and infection, is also integral to
the pathogenesis of many chronic disorders. Both
acute and chronic inflammatory states are orches-
trated by the innate and adaptive immune sys-
tems together with a broad array of soluble medi-
ators. In diverse tissues, convergent effector path-
ways drive angiogenesis, extracellular-matrix re-
modelling, oxidative stress, tissue damage and fi-
brosis. Atherosclerosis exemplifies a chronic in-
flammatory disease: its initiation involves leukocyte
recruitment, its progression is sustained by mul-
tiple inflammatory mediators regulated by innate
and adaptive immune cells, and its complications—
plaque disruption and thrombosis—derive from the
same inflammatory milieu8.

Inflammatory Pathways
Toll-like receptors (TLRs)
Humans express ten TLRs, whereas mice possess
thirteen. In the liver, Kupffer cells, hepatocytes, si-
nusoidal endothelial cells and hepatic stellate cells
all express TLRs. TLRs localise either to the plasma
membrane (TLR2, 4, 5, 6, 11) or to intracellular vesi-
cles such as endosomes, lysosomes and the endo-
plasmic reticulum (TLR3, 7, 8, 9). Ligand engage-
ment recruits distinct adaptor proteins; all TLRs ex-
cept TLR3 signal through myeloid differentiation
primary-response protein 88 (MyD88), which in turn
recruits IL-1-receptor-associated kinases. Down-
stream activation of nuclear factor-κB (NF-κB), acti-
vator protein-1 (AP-1) and interferon-regulatory fac-
tors induces expression of inflammatory cytokines,
chemokines and type I interferons9.

Nuclear factor-κB (NF-κB)
NF-κB was first identified in 1986 by Baltimore
and colleagues as a nuclear enhancer-binding pro-
tein in B cells. It is now known to reside quies-
cently in the cytoplasm of virtually all cell types
and to be evolutionarily conserved from Drosophila
to humans. Five family members have been char-
acterised: NF-κB1 (p50/p105), NF-κB2 (p52/p100),
RelA (p65), RelB and c-Rel. Two activation path-
ways exist, canonical and non-canonical; in both,
p105 and p100 are proteolytically processed to p50
and p52 before nuclear translocation10. All NF-κB
proteins share a 300-amino-acid Rel homology do-
main that mediates dimerisation, DNA binding and
nuclear localisation. c-Rel, RelB and p65 contain
transcriptional activation domains, whereas p50 and
p52 do not. In resting cells NF-κB dimers are se-
questered in the cytoplasm by inhibitor of κB (IκB)
proteins (IκBα, IκBβ, IκBε). Stimuli such as phor-
bol esters, lipopolysaccharide, HTLV-1 Tax, tumour
necrosis factor-α (TNF-α), interleukin-1 (IL-1), vi-
ral infection and ultraviolet irradiation induce IκB
degradation and permit NF-κB nuclear entry. NF-
κB then drives transcription of pro-inflammatory
cytokines and chemokines, while AP-1 up-regulates
genes encoding cytokines, enzymes and factors in-
volved in leukocyte activation and tissue remod-
elling 11.

Inflammasomes
Inflammasomes are cytosolic multiprotein com-
plexes of the innate immune system that detect
exogenous or endogenous danger signals and reg-
ulate homeostasis or tissue-injury responses. In
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Eicosanoids
Eicosanoids are potent lipid mediators derived from
arachidonic acid, a 20-carbon polyunsaturated fatty
acid. Arachidonic acid is metabolised via the 5-
lipoxygenase pathway to leukotrienes or the cyclo-
oxygenase pathway to prostanoids (prostaglandins,
thromboxanes, prostacyclins). PGE₂ and PGI₂ crit-
ically regulate immune-cell migration and activa-
tion 18. Eicosanoid synthesis is initiated by con-
trolled oxygen-radical reactions catalysed by spe-
cific oxygenases and is modulated by intracel-
lular redox status; glutathione peroxidases reg-
ulate both cyclo-oxygenases and lipoxygenases
via peroxide tone. Reactive oxygen species can
also non-enzymatically oxidise arachidonic acid to
eicosanoid-like products. Neutrophil-derived cy-
tokines, chemokines, proteases and reactive oxy-
gen species, together with macrophage mediators,
amplify local inflammation, whereas neutrophil or
macrophage apoptosis and polarisation toward M2
macrophages promote resolution and tissue repair.
Genetic variants affecting epithelial or immune
function, dysregulated T-cell responses, impaired
barrier integrity, microbial dysbiosis and over-active
NF-κB signalling all contribute to IBD pathogenesis.
Oxidative stress exacerbates inflammation by acti-
vating NF-κB, inducing cellular damage and impair-
ing tissue function19.

ROLE OF INFLAMMATION IN
DISEASES
Autoimmune Diseases and Inflammation
Targeting inflammatory mediators and their sig-
nalling pathways represents a promising therapeu-
tic strategy for autoimmune diseases (AIDs). In-
flammasomes and other inflammatory mediators
play a central role in AID pathophysiology bymodu-
lating B- and T-cell responses within both the innate
and adaptive immune compartments and ultimately
driving autoimmune reactivity. This review there-
fore summarises the contribution of inflammation
to various AIDs and outlines current or investiga-
tional inhibitors directed at key inflammatory com-
ponents 20.
It has long been recognised that Th1, Th2 and Th17
subsets, as well as other T-cell-mediated responses,
are critical to the initiation of autoimmune disor-
ders. Compelling evidence now indicates that dys-
regulated Th1, Th2 and Th17 responses make a ma-
jor contribution to autoimmune inflammation. Va-
soactive intestinal peptide (VIP) has recently been

the gastrointestinal tract they maintain tolerance 
towards commensal microbes and dietary anti-
gens, yet initiate inflammation upon pathogen in-
vasion. Dysregulated inflammasome activation un-
derlies chronic intestinal inflammation and im-
munopathology. Sensing of danger signals leads to 
caspase-1 activation, cleavage and release of IL-1β 
and IL-18, and pyroptotic cell death, thereby am-
plifying inflammation. The gut microbiota modu-
lates these pathways: an appropriate balance of pro-
inflammatory cytokines (TNF-α, IL-1, IL-6) and anti-
inflammatory cytokines (IL-10, TGF-β) is essential 
for resolution of injury 12.
The NAIP/NLRC4 inflammasome recognises com-
ponents of bacterial type III secretion systems and 
flagellin. In humans NAIP detects the T3SS nee-
dle protein, whereas murine NAIP5/6 bind flagellin 
and NAIP1/2 recognise the rod and needle pro-
teins. Gain-of-function mutations in NLRC4 cause 
life-threatening periodic-fever syndromes charac-
terised by high circulating IL-18 and predisposition 
to macrophage-activation syndrome13.

Key Mediators
Cytokines
Since the discovery of IL-1 and TNF, extensive 
characterisation of their biological and physic-
ochemical properties has enabled production of 
recombinant proteins. Sufficient q uantities are 
now available for clinical investigation—particularly 
TNF in oncology—as well as for development 
of ligand-binding assays and pharmacological in-
hibitors unimagined in the 1970s14.
Interleukin-8 (IL-8), produced by activated 
macrophages and fibroblasts, induces chemotaxis, 
activation and degranulation of neutrophils, pro-
moting protease release. Cervical tissue produces 
IL-8; human lower uterine-segment fibroblasts 
secrete increased IL-8 in response to IL-1β, and 
local IL-8 administration in animal models causes 
cervical ripening and dilatation, implicating IL-8 in 
parturition 15.

Chemokines
Chemokines provide directional cues for leukocyte 
trafficking to inflamed sites and participate in T-cell 
activation, B-cell class-switch recombination, neu-
trophil degranulation, dendritic-cell maturation and 
macrophage activation. They thus influence both 
innate and adaptive immunity16. These small pro-
teins share a conserved four-cysteine motif and are 
classified according to the arrangement of the first 
two cysteines into CC and CXC families17.
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shown to modulate the effector functions of sev-
eral cell populations involved in rheumatoid arthri-
tis, including macrophages, fibroblast-like synovio-
cytes and lymphocytes 21.

Chronic Diseases and Inflammation
Inflammation is a pivotal factor in the development
of atherosclerosis and, consequently, cardiovascu-
lar disease. Tobacco smoking is a well-established
risk factor for this multifactorial disorder. After ad-
justment for age, region and sex, the INTERHEART
study (12,438 cases; 14,605 controls) showed that
current smokers had a markedly higher risk of my-
ocardial infarction (odds ratio = 2.3; 95 % CI = 2.1–
2.6) than never-smokers 22.
The inflammatory state associated with metabolic
syndrome is unusual, as it occurs without overt in-
fection, autoimmunity or marked tissue damage.
Because the magnitude of activation is modest, it is
commonly referred to as ‘low-grade’ chronic inflam-
mation. To describe an intermediate state between
basal and overt inflammation, some authors have
coined the terms ‘metaflammation’ (metabolism-
induced inflammation) and ‘parainflammation’. Re-
gardless of nomenclature, the inflammatory mi-
lieu that characterises metabolic syndrome displays
unique features whose mechanisms remain incom-
pletely understood 23.

Cancer and Inflammation
Tumour development is accompanied by the expan-
sion of stroma, vasculature, infiltrating inflamma-
tory cells andmalignant cells; crosstalk among these
compartments fuels tumour progression. Early ob-
servations indicated that acute inflammation can
suppress or eradicate nascent malignancies 24.
First proposed by Rudolf Virchow more than a cen-
tury ago, the link between inflammation and cancer
has since been corroborated by genetic and molec-
ular studies. Epidemiological, clinical and experi-
mental data demonstrate that persistent inflamma-
tion predisposes individuals to specific cancers and
accelerates tumourigenesis. Hallmarks of cancer-
related inflammation include expression of tumour
necrosis factor (TNF) and interleukin-1 (IL-1), leuko-
cyte infiltration, chemokine production (e.g. CCL2,
CXCL8), dynamic tissue remodelling and neovascu-
larisation 25.
A tumour can be viewed as a chronic, non-
healing inflammatory wound. Primary tumour sites
harbour a spectrum of inflammatory cells—from
myeloid and lymphoid lineages and from innate and

adaptive immunity—in addition to the tumour cells
themselves. These cells influence diverse tumour
phenotypes and biological behaviours. Three prin-
cipal myeloid subsets infiltrate tumours: tumour-
associated neutrophils (TANs), tumour-associated
macrophages (TAMs) and Gr-1⁺CD11b⁺ immature
myeloid cells. Gr-1⁺CD11b⁺ cells constitute a hetero-
geneous population, whereas TAMs and TANs are
more differentiated. The phenotypic and functional
interrelationships of these three subsets within the
tumour micro-environment (TME) remain to be
fully elucidated. Because of their potent immuno-
suppressive activity, Gr-1⁺CD11b⁺ cells are gener-
ally termed myeloid-derived suppressor cells (MD-
SCs) 26.

Therapeutic Strategies in Inflammation
C-reactive protein (CRP), erythrocyte sedimen-
tation rate (ESR), interleukin (IL)-1β, IL-6, tu-
mour necrosis factor-α (TNF-α), matrix metallopro-
teinases (MMPs), fibrinogen, myeloperoxidase and
leukotrienes constitute a recognised panel of in-
flammatory biomarkers that support both diagno-
sis and longitudinal monitoring. Resolution of in-
flammation is an essential component of tissue re-
pair and involves tightly coordinated events, includ-
ing clearance of inflammatory cells and mediators,
restoration of vascular integrity, activation of anti-
inflammatory signalling and phagocytosis, stimula-
tion of tissue regeneration, transition to a repara-
tive phenotype and prevention of chronic inflam-
mation. Among the available interventions, non-
steroidal anti-inflammatory drugs (NSAIDs) remain
the most widely used; approximately 30 million peo-
ple worldwide take these agents daily. NSAIDs are
generally effective against acute and chronic inflam-
matory conditions. More than 40 individual NSAIDs
are marketed and are typically classified by chem-
ical structure and anticipated risk profile. In gen-
eral, NSAIDs display small volumes of distribution,
high plasma-protein binding, limited first-pass hep-
atic metabolism and good oral absorption. Routes
of administration, elimination half-lives and tolera-
bility vary among agents, although members of the
same chemical class usually share similar pharma-
cokinetic characteristics. Globally, ibuprofen and
diclofenac are themost frequently usedNSAIDs, fol-
lowed by naproxen, indomethacin, piroxicam and
ketoprofen. Aspirin, naproxen and ibuprofen are
available over the counter for common indications
such as headache and postoperative pain, whereas
the majority of NSAID prescriptions are generated
in primary care settings 27.
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phospholipase A₂ and converted by COX or lipoxy-
genase enzymes into eicosanoids. COX-1 and COX-
2 catalyse the first committed step in prostaglandin
and thromboxane biosynthesis33.
This review included randomised controlled trials of
NSAIDs in which pain was an outcome for acute
conditions (e.g., strains, sprains, sports injuries) or
chronic disorders (e.g., arthritis, rheumatism). Tri-
als involving thrombophlebitis, experimental pain
models, vaginitis or oral/buccal conditions were ex-
cluded 34.
A summary of NSAID classes, mechanisms of action
and clinical implications is provided in Table 1.

NSAIDs and corticosteroids
Because of their anti-inflammatory and analgesic
properties, non-steroidal anti-inflammatory drugs
(NSAIDs) are useful in the management of rheuma-
toid arthritis (RA). In many patients, these agents
may adequately control symptoms and obviate the
need for disease-modifying antirheumatic drugs
(DMARDs). Furthermore, patients with suspected
RA often receive NSAIDs to provide temporary
symptom relief until a definitive diagnosis is estab-
lished or disease progression warrants initiation of
DMARD therapy 35.
NSAIDs have been shown to be effective in treating
acute pain, thereby representing one of the first-line
pharmacological treatments for arthritic pain. How-
ever, expert opinions and current guidelines differ
regarding whether NSAIDs are superior to paraceta-
mol as first-line analgesic therapy for arthritic disor-
ders. In a recent meta-analysis of 15 RCTs including
5,986 participants, NSAIDs were significantly more
effective than paracetamol for knee and hip pain in
osteoarthritis, although the effect size for both ther-
apies was modest. NSAIDs are also frequently used
to treat RA symptoms, but the effects are likewise
limited 36.

NSAIDs and cancer
Accumulating evidence over several decades
has demonstrated the anti-neoplastic activity of
NSAIDs. After the identification of the COX-2 iso-
form, research revealed that it is highly expressed in
several malignancies—including those of the breast,
colon, pancreas, and prostate—and appears to reg-
ulate numerous cellular functions. Because of their
potential role in cancer prevention and therapy,
selective COX-2 inhibitors have been the subject
of intense investigation. Both COX-dependent
and COX-independent mechanisms are believed

Non-Steroidal Anti-Inflammatory Drugs
In addition to their analgesic, anti-inflammatory 
and antipyretic properties, NSAIDs inhibit platelet 
aggregation 28. Their potential antidepressant 
effects a re u nder a ctive i nvestigation; conse-
quently, this discussion is divided into ‘selec-
tive COX-2 inhibitors’ and ‘non-selective COX in-
hibitors’, as selective COX-2 blockade is hypoth-
esised to confer superior anti-inflammatory—and 
thus antidepressant—activity 29. NSAIDs exert their 
principal effects b y i nhibiting p rostaglandin syn-
thesis through cyclo-oxygenase (COX)-1 and COX-2 
blockade. They are therefore categorised into tradi-
tional non-selective agents, which inhibit both iso-
forms, and newer selective COX-2 inhibitors that 
preferentially target COX-2, although pharmacody-
namic overlap exists30.
COX-1 is constitutively expressed and fulfils sev-
eral physiological roles; activation in gastric mu-
cosa and vascular endothelium generates cytopro-
tective and antithrombogenic prostacyclin. In con-
trast, COX-2, characterised in the early 1990s, is in-
ducible in response to pro-inflammatory stimuli in 
multiple cell types. Needleman et al. first postulated 
its existence after o bserving lipopolysaccharide-
induced prostaglandin production in mouse peri-
toneal macrophages and human monocytes—an ef-
fect suppressed by dexamethasone and associated 
with de novo COX protein synthesis31.

Mechanism of Action of NSAIDs
Synovial fluid from patients with rheumatoid arthri-
tis contains ≈20 ng ml⁻¹ of prostaglandin E₂ (PGE₂); 
this level falls to undetectable concentrations af-
ter aspirin therapy, indicating clinically significant 
suppression of prostaglandin synthesis. In a rat 
model of carrageenan-induced inflammation, sub-
cutaneous implantation of polyester sponges led 
to a steady increase in PGE₂ within the first 24 
h, whereas thromboxane A₂ (TXA₂) and leukotriene 
B₄ (LTB₄) peaked at 4–6 h and declined there-
after. PGE₂ mediates vasodilatation and hyperalge-
sia, while LTB₄ recruits polymorphonuclear leuko-
cytes; the role of TXA₂ remains unclear32. 
Prostaglandins are lipid mediators derived from 
arachidonic acid via the COX pathway and par-
ticipate in numerous physiological and pathologi-
cal processes, including pain, inflammation, fever, 
oncogenesis and neurological disease. Arachidonic 
acid, a 20-carbon polyunsaturated fatty acid esteri-
fied within membrane phospholipids, is liberated by
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Table 1: Summary of NSAID classes, mechanisms and clinical implications.

Class Exam-
ples

Mechanism Clinical Uses Key Side Effects Contra-indications

Salicy-
lates

Aspirin Irreversible
COX-1 and
COX-2

inhibition

Pain, fever,
antiplatelet (e.g.,
for cardiovascular
protection), anti-
inflammatory

GI bleeding, Reye’s
syndrome (in children
with viral infections),

tinnitus,
hypersensitivity

reactions

Children with viral
infections, pregnancy

(3rd trimester),
bleeding disorders,
hypersensitivity to

salicylates

Propi-
onic
acid

deriva-
tives

Ibupro-
fen,

Naproxen,
Keto-
profen

Reversible
COX-1 and
COX-2

inhibition

Pain,
inflammation,

fever

GI upset (dyspepsia,
ulcers), CV risk

(dose-dependent, e.g.,
MI, stroke), renal

impairment

Peptic ulcer disease,
CV disease, renal
impairment,

hypersensitivity

Acetic
acid

deriva-
tives

Di-
clofenac,
In-

domethacin

Reversible
COX-1 and
COX-2

inhibition

Pain,
inflammation,

gout
(indomethacin),
patent ductus
arteriosus

(indomethacin)

High GI risk (ulcers,
bleeding), CV risk (e.g.,
MI, stroke), CNS effects

(e.g., headache,
dizziness), renal
impairment

Peptic ulcer disease,
CV disease, renal
impairment,

hypersensitivity

Enolic
acid

deriva-
tives
(Oxi-
cams)

Piroxi-
cam,
Meloxi-
cam

Reversible
COX-1 and
COX-2

inhibition
(meloxicam:
some COX-2
selectivity)

Pain,
inflammation

GI upset, CV risk (e.g.,
MI, stroke),

photosensitivity
(piroxicam)

Peptic ulcer disease,
CV disease, renal
impairment,

hypersensitivity

Fe-
namic
acid

deriva-
tives

Mefe-
namic
acid

Reversible
COX-1 and
COX-2

inhibition

Pain,
inflammation

GI upset, diarrhoea,
haemolytic anaemia

(rare)

Peptic ulcer disease,
renal impairment,
hypersensitivity

Selec-
tive

COX-2
in-

hibitors

Cele-
coxib,
Etori-
coxib

Selective COX-2
inhibition

Pain,
inflammation,

arthritis (lower GI
risk vs.

non-selective
NSAIDs)

Increased CV risk (e.g.,
MI, stroke), fluid
retention, oedema

History of CV disease,
sulphonamide allergy

(celecoxib),
hypersensitivity

Abbreviations: CV, cardiovascular; CNS, central nervous system; GI, gastrointestinal; MI, myocardial in-
farction.

to contribute to the anticancer effects of COX-2
inhibitors and other NSAIDs. COX-2 is highly
inducible in response to growth factors, tumor
promoters, and inflammatory cytokines, whereas
COX-1 is constitutively expressed in most tissues
and fulfils a “housekeeping” role33.

NSAIDs and COVID-19
The relevance of these findings to the COVID-19
pandemic remains uncertain. Data on intermittent
NSAID use are limited to primary-care trials that
evaluated short-term dosing during respiratory in-

fections. Nevertheless, sporadic NSAID administra-
tion may help patients with COVID-19 by reliev-
ing nocturnal symptoms and promoting sleep when
paracetamol is inadequate—sleep being important
for immune defence. The available evidence does
not support routinely advising against NSAID use.
Early concerns that antihypertensives or ibuprofen
might exacerbate COVID-19 severity have not been
substantiated. Moreover, NSAIDs may be required
to treat co-existing symptoms such asmusculoskele-
tal pain in patients with COVID-1937.
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COX-2 selective NSAIDs and
Inflammation
Celecoxib is a selective cyclooxygenase-2 (COX-
2) inhibitor that exhibits anti-inflammatory, an-
tipyretic, and analgesic activity. It is approved for
the treatment of acute pain, ankylosing spondyli-
tis, rheumatoid arthritis, and osteoarthritis. In pa-
tients with familial adenomatous polyposis (FAP),
celecoxib is used as an adjuvant to surgery to re-
duce the number of adenomatous colorectal polyps
and has also shown potential chemopreventive ef-
fects in other malignancies. Celecoxib’s ability to
reduce inflammation and discomfort stems from its
specific suppression of prostaglandin G/H synthase-
2 (encoded by gene PTGS2), thereby decreasing
prostaglandin synthesis. PTGS exists as two isoen-
zymes, PTGS1 and PTGS2, both possessing cy-
clooxygenase and hydroperoxidase activities42.
Valdecoxib is another NSAID indicated for primary
dysmenorrhoea as well as for the symptomatic
treatment of osteoarthritis and rheumatoid arthri-
tis. It is a potent and highly selective COX-2 in-
hibitor; because COX-2 is an inducible isoenzyme
that is principally expressed in inflamed tissues, in-
hibition by valdecoxib spares constitutive COX-1 ac-
tivity in most physiological tissues43. Drugs in this
class, also referred to as coxibs, COX-2-specific in-
hibitors, COX-2-selective NSAIDs or COX-1-sparing
NSAIDs, exhibit high potency and slow dissociation
from the COX-2 active site, a property conferred
by their extended side chains that occupy the hy-
drophobic channel of the enzyme. At therapeutic
concentrations valdecoxib does not inhibit COX-1
in humans (43, 44). Although it is associated with
a lower incidence of peptic ulceration and gastroin-
testinal bleeding than non-selective NSAIDs, valde-
coxib confers a higher risk of serious cardiovascular
events and was withdrawn from the market in 2005
because of an excess incidence of myocardial infarc-
tion and stroke at high doses or after prolonged use.
Representative chemical structures of celecoxib and
valdecoxib are shown in Figure 2.
Chronic administration of NSAIDs can result in ad-
verse effects including peptic ulcer disease, gastroin-
testinal bleeding, renal impairment, hepatotoxicity
and cardiovascular events. While these drugs are
efficacious for the management of acute pain and
inflammation, they do not abrogate the underlying
pathophysiological processes of chronic inflamma-
tory disorders such as rheumatoid arthritis and in-
flammatory bowel disease. Consequently, there is
a pressing need to identify novel anti-inflammatory

NSAIDs: COX-independent
anti-inflammatory effects
The clinical response to NSAIDs varies markedly 
between individuals, suggesting differences beyond 
prostaglandin inhibition. Pharmacokinetic factors 
such as enantiomeric configuration, serum concen-
trations, or metabolism do not fully explain this 
variability. These observations imply that NSAID-
induced, prostaglandin-independent pathways play 
an important role in determining individual respon-
siveness 38.

Non-selective NSAIDs and inflammation
Naproxen is a non-steroidal anti-inflammatory 
drug with analgesic, anti-inflammatory, and an-
tipyretic properties attributable t o i nhibition of 
prostaglandin synthesis. It is a widely used over-
the-counter (OTC) agent with favourable efficacy 
and a comparatively low adverse-effect profile. 
Naproxen is chiral, existing as the (S)- and (R)-
enantiomers; the (S)-form is approximately 28-fold 
more potent than the (R)-form in anti-inflammatory 
and analgesic activity39.
Ibuprofen is among the most commonly used anal-
gesic, antipyretic, and anti-inflammatory OTC med-
ications worldwide. Usage patterns differ by coun-
try, but it is generally ranked behind aspirin and 
paracetamol for self-medication of fever, inflamma-
tion, and acute pain. Of these three agents, OTC 
ibuprofen is considered the safest, being rarely as-
sociated with fatal or severe adverse events. Con-
sequently, it has been referred to as the “mildest” 
NSAID in long-term clinical use40.
Oxaprozin, a propionic-acid derivative, is an achi-
ral oxazole with moderate lipophilicity and a pKa 
of 6.1 in water. These physicochemical properties 
may underlie its favourable gastric tolerability. Fur-
thermore, its distribution within lipophilic media be-
tween pH 2 and 4 varies less than that of many 
NSAIDs, suggesting slower gastric cellular uptake 
and potentially reduced mucosal injury41. 
Piroxicam is a non-steroidal anti-inflammatory drug 
that inhibits platelet aggregation and possesses 
analgesic, antipyretic, and anti-inflammatory activ-
ity. It has an elimination half-life of approximately 
38 h and is primarily cleared by hepatic metabolism 
to inactive metabolites. Clinical trials have demon-
strated the efficacy o f p iroxicam i n osteoarthritis 
and rheumatoid arthritis; smaller studies also sup-
port its use for acute musculoskeletal disorders and 
gouty arthritis 30.
Structures of naproxen, ibuprofen, oxaprozin, and 
piroxicam are presented in Figure 1.
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Figure 1: Structures of some non-steroidal anti-inflammatory drugs (NSAIDs): a. Naproxen, b. Ibuprofen, c.
Oxaprozin, d. Piroxicam.
A group of chemical formulas AI-generated content may be incorrect.

Figure 2: Cyclooxygenase-2 (COX-2) selective non-steroidal anti-inflammatory drugs (NSAIDs): Chemical struc-
tures of celecoxib and valdecoxib.
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Exercise and inflammatory markers: Cross-
sectional studies reveal an association between
physical inactivity and low-grade systemic inflam-
mation in healthy older adults and patients with in-
termittent claudication, although causality cannot
be inferred. Two long-term trials showed that reg-
ular exercise reduces C-reactive protein (CRP) con-
centrations, supporting the hypothesis that habitual
physical activity mitigates systemic inflammation.
In a controlled study, healthy volunteers received
a low dose of Escherichia coli endotoxin to induce
experimental low-grade inflammation; participants
randomised to exercise before endotoxin adminis-
tration exhibited significantly lower tumour necro-
sis factor (TNF-α) responses than those at rest48.
Paradoxically, the transient exercise-induced rise
in pro-inflammatory cytokines (e.g., TNF-α, IL-
1β, IL-6) triggers subsequent production of anti-
inflammatory mediators, reactive oxygen and nitro-
gen species (O2−, NO), and manganese superoxide
dismutase (Mn-SOD). This cascade culminates in re-
lease of transforming growth factor-β (TGF-β), IL-
10, and IL-1 receptor antagonist. Endurance exercise
elicits a greater cytokine response than moderate
activities such as walking, cycling, tennis, or rowing;
skeletal muscle and peripheral blood mononuclear
cells are the principal sources of these cytokines49.
The optimal exercise prescription for reducing in-
flammation is still being elucidated. Compared with
habitual physical activity, structured exercise ex-
hibits a dose-dependent relationship with inflam-
matory mediators and health outcomes. Emerging
research on sedentary behaviour and light-intensity
activity further emphasises their associations with
vascular dysfunction and cardiovascular risk. Cur-
rent evidence supports regular moderate-intensity
aerobic exercise (30–60min per session, 3–5 days per
week), which reduces visceral adiposity, improves
insulin sensitivity, lowers oxidative stress, increases
anti-inflammatory cytokines (e.g., IL-10), and mod-
ulates immune-cell profiles (higher regulatory T-cell
and lower macrophage counts), thereby attenuating
systemic inflammation 50.

Mechanism of action of phenolic
compounds as medications that reduce
inflammation
Phenolic compounds inhibit pro-inflammatory me-
diators other than cyclo-oxygenase (COX) by de-
creasing their production or activity, a mech-
anism that parallels that of non-steroidal anti-
inflammatory drugs (NSAIDs). Furthermore, sev-
eral phenolic agents can both up- and down-regulate

agents. Lifestyle modifications provide a comple-
mentary strategy with fewer and less severe adverse 
effects, a nd may r educe p harmacological require-
ments and their attendant risks44, 45.

Lifestyle Modification and Inflammation
Role of diet in inflammation: Most indi-

viduals in Western societies adopt lifestyles that 
markedly increase their risk of developing chronic 
metabolic disorders, including cancer, diabetes, neu-
rodegenerative diseases, and cardiovascular dis-
ease. Chronic low-grade inflammation accom-
panying these conditions is mediated by activa-
tion of several molecular pathways, notably NF-
κB, MMP-9 (matrix metalloproteinase-9), MAPKs 
(mitogen-activated protein kinases), COX-2 (cyclo-
oxygenase-2), and STAT-3 (signal transducer and 
activator of transcription-3). Matrix metallopro-
teinases (MMPs) degrade the extracellular matrix, 
facilitating immune-cell infiltration and perpetuat-
ing inflammation. Numerous intervention studies 
demonstrate that lifestyle modification can atten-
uate inflammation and improve health outcomes. 
Fermentable dietary fibres escape enzymatic diges-
tion in the small intestine, reach the colon, and 
are converted by the gut microbiota into the short-
chain fatty acids (SCFAs) a cetate, p ropionate, and 
butyrate. These SCFAs are absorbed systemically 
and suppress inflammatory signalling; conversely, 
germ-free animals, which lack tissue and circulat-
ing SCFAs, display exaggerated inflammatory flare-
ups 45.
Fruits and vegetables should constitute a major 
component of an anti-inflammatory diet. They are 
energy-sparse yet rich in vitamins, minerals, and 
phytochemicals, and should be consumed in large 
quantities, in a variety of colours and types, at ev-
ery meal. Their high polyphenol content under-
lies both their vivid pigmentation and their anti-
inflammatory activity 46.
Omega-6 fatty a cids s erve a s p recursors o f many 
pro-inflammatory eicosanoids; however, arachi-
donic acid, not linoleic acid (the predominant di-
etary omega-6 fatty acid), is the immediate substrate 
for eicosanoid synthesis. The rate-limiting desat-
urases Δ6- and Δ5-desaturase regulate conversion 
of linoleic acid to arachidonic acid and are modu-
lated by hormonal and nutritional factors. A prin-
cipal aim of anti-inflammatory diets is therefore to 
dampen systemic inflammation in conditions such 
as arthritis, cardiovascular disease, and neurodegen-
erative disorders 47.
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transcription factors, such as nuclear factor-κB (NF-
κB). Dietary polyphenols attenuate inflammation
through diverse mechanisms, including antioxidant
activity, inhibition of pro-inflammatory signaling
pathways, modulation of cytokine release, and regu-
lation of immune responses. The chemical structure
of phenolic compounds critically influences their
anti-inflammatory mechanisms. For example, when
the C ring is unsaturated, resonance stabilizes the
intermediate radical species. Moreover, a C2–C3
double bond promotes coplanarization of rings A
and C, enhancing the flavonoid’s interaction with
the enzyme’s active site. The catechol group on the
B ring facilitates enzymatic oxidation, generating
electrophilic species that permit subsequent nucle-
ophilic addition 51.

Emerging Therapies of Inflammation
Novel targets of inflammation
There are five known mammalian inflammatory
caspases, and all possess an N-terminal caspase-
activation-and-recruitment domain (CARD). On
chromosome 11q22, human inflammatory caspases
are arranged as follows: caspase-12, caspase-4,
caspase-5, and caspase-1. In mice, the syntenic re-
gion is arranged similarly, with caspase-12, caspase-
11 and caspase-1. Comparable to murine caspase-
11, human caspase-4 and ‑5 are duplicates, accord-
ing to phylogenetic analysis. Moreover, the tissue-
distribution patterns of caspase-11 and caspase-
4 mRNA are comparable, and lipopolysaccharide
(LPS) and interferon (IFN) induce the expression of
both caspase-5 and caspase-11. Genes generated by
duplication of the caspase-1 locus are located im-
mediately downstream in the human genome. The
three caspase-1 inhibitors encoded by these gene
products—ICEBERG, INCA and COP—all contain a
single CARD domain. Small molecules such as VX-
765, a caspase-1 inhibitor, have been tested in clini-
cal trials for the inflammatory disease rheumatoid
arthritis. In IBD and related conditions, agents
such as apremilast and canakinumab (which pri-
marily targets IL-1β) have shown therapeutic po-
tential. Epigenetic mechanisms, including DNA
methylation, histone modifications and non-coding
RNA regulation, modulate the activation or repres-
sion of inflammation-related genes (e.g., NF-κB tar-
gets) in response to infection, stress and environ-
mental stimuli; consequently, they constitute an-
other promising therapeutic avenue. Therefore,
these mechanisms hold promise for the develop-
ment of targeted therapies for inflammatory dis-
eases. miR-155 and miR-21 enhance the inflamma-
tory response by promoting cytokine expression and

activating NF-κB. miR-146a helps terminate exces-
sive inflammation by suppressing NF-κB and other
pro-inflammatory pathways. Consequently, miR-
NAs are currently being explored as potential ther-
apeutic targets in inflammatory diseases52.

Inflammation in CKD
Numerous mediators are involved in the intricate
chain of events that constitutes the inflammatory
response, which affects multiple cell types. Mea-
suring one or more of these mediators can help de-
termine the presence of inflammation. This can be
achieved by assessing easily accessible and inexpen-
sive markers such as the white-blood-cell count or
serum albumin levels. Unfortunately, because they
can be influenced by many other conditions, these
markers are often non-specific. More precise indi-
cators of inflammation, such as C-reactive protein
and IL-6, provide amore detailed assessment but are
costlier and not universally available in routine prac-
tice 53.

Inflammation in atherosclerosis
Despite therapeutic advances, atherosclerotic car-
diovascular disease (ASCVD) remains the leading
cause of morbidity and mortality worldwide. In-
flammation is pivotal to atherogenesis and can pre-
cipitate plaque rupture and acute coronary syn-
drome. Although statins markedly reduce cardio-
vascular events in both primary and secondary pre-
vention, many patients still experience recurrent
adverse events. Therefore, targeting inflammatory
pathways represents a promising strategy for novel
atherosclerosis therapeutics. RAAS activity is cru-
cial in the pathogenesis of many cardiovascular dis-
eases. Targeting RAAS components with inhibitors
such as ACE inhibitors, angiotensin-receptor block-
ers and aldosterone antagonists can mitigate these
pro-inflammatory effects and improve outcomes.
All of the above strategies can likewise be applied
as emerging approaches to target chronic inflamma-
tion 54.

Precision medicine for inflammation
There is evidence of a correlation between circu-
lating IL-6 concentrations, serum C-reactive pro-
tein (CRP) levels, and serum amyloid A (SAA) con-
centrations. More individualized immunotherapies
may be possible if inflammatory biomarkers are dy-
namically monitored to determine vaccination risks
and to tailor therapy. These therapies could tar-
get cytokines such as IL-1, TNF-α, or IL-6 to re-
duce inflammation, or employ immune adjuvants
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recruits proteins for inflammasome assembly, a
central ATPase-containing NACHT (found in NAIP,
CIITA, HET-E and TP1) domain that promotes
oligomerisation, and a C-terminal leucine-rich
repeat (LRR) domain. Similar to other inflamma-
somes, the NLRP3 inflammasome consists of a
sensor (NLRP3), an adaptor [apoptosis-associated
speck-like protein containing a CARD (ASC)], and
an effector (caspase-1). Formation of the NLRP3
inflammasome proceeds in two steps: priming
and activation. During priming, stimulation with
pathogen-associated molecular patterns (PAMPs)
or danger-associated molecular patterns (DAMPs)
such as lipopolysaccharide (LPS), or with cytokines
including TNF and IL-1β, engages TLR, NOD2,
IL-1R or TNF receptor signalling pathways, leading
to transcriptional up-regulation of NLRP3 and of
the pro-forms of the inflammatory cytokines IL-1β
and IL-18 59. Recognition of PAMPs and DAMPs ac-
tivates signalling proteins and transcription factors,
including activator protein-1 (AP-1), nuclear factor-
κB (NF-κB) and myeloid differentiation primary
response protein 88 (MyD88), thereby amplifying
NLRP3 and cytokine expression. Although priming
has long been considered to affect only transcription
and protein synthesis, emerging evidence indicates
that it also exerts non-transcriptional effects.
Specifically, priming regulates post-translational
modifications of NLRP3, such as phosphorylation
and ubiquitination, which are critical for controlling
its activation. In its inactive state, ADP-bound
NLRP3 may exist as an oligomer or a monomer.
Monomeric NLRP3 localises to cellular membranes
that act as scaffolds for assembly of an oligomeric
double-ring structure composed of five to eight
dimer pairs whose interlocking LRR domains form
a back-to-back circular cage60.

Anti-Inflammatory miRNAs
MicroRNAs (miRNAs) are short non-coding RNA
molecules of approximately 18–25 nucleotides that
are transcribed by RNA polymerase II or III from
intergenic or intragenic loci. Following initial pro-
cessing by the RNase III enzyme Drosha in the nu-
cleus, the precursormiRNA (pre-miRNA) is exported
to the cytoplasm, where the endoribonuclease Dicer
cleaves the hairpin to generate a miRNA duplex.
One strand of this duplex is incorporated into the
RNA-induced silencing complex (RISC), which mod-
ulates gene expression predominantly by promoting
mRNA degradation or inhibiting translation. In cer-
tain contexts, however, miRNAs can stabilise tar-
get transcripts and even enhance their transcription

to augment the immune response. IL-6 is crucial 
for the differentiation of dendritic cells (DCs), main-
taining them in an immature, tolerance-associated 
state. The inflammatory response—including DC 
maturation—is initiated early during infection and 
subsequently amplified. Biologics such as anti-TNF 
agents have revolutionized treatment, but not all 
patients respond. Side effects and resistance may 
also occur in some patients 55. Baseline systemic 
inflammatory status predicts the clinical outcome 
under treatments such as immune checkpoint in-
hibitors, anticancer vaccines, or combination ther-
apies. However, because of methodological het-
erogeneity, it is challenging to determine the pre-
dictive significance of IL-6/CRP across studies; val-
ues may lie below the median or cluster into dis-
tinct subgroups. Overall, a better prognosis i s as-
sociated with lower CRP levels. In the tumor mi-
croenvironment, IL-6-mediated STAT3 activation in-
hibits functional DC maturation, thereby reducing 
effector T-cell activation and impairing anticancer 
immunity 56. IL-6 signalling exhibits both pro- and 
anti-inflammatory properties: it initially promotes 
the differentiation o f macrophages and T- and B-
lymphocytes, and later contributes to the resolu-
tion of inflammation 57. Cis-signalling is restricted 
to cells that express IL-6Rα, including hematopoietic 
and hepatic cells. By contrast, IL-6 trans-signalling 
supports anti-tumour adaptive immunity by direct-
ing lymphocytes to tumour sites and draining lymph 
nodes. Consequently, precise modulation of inflam-
mation may be more important than merely re-
ducing toxicity, particularly during immunotherapy. 
Comprehensive biomonitoring should include quan-
tification of soluble IL-6 receptors and assessment 
of CRP conformational isoforms (monomeric ver-
sus pentameric) when evaluating anti-IL-6 or anti-
IL-6R therapies58. The clinical implementation of 
precision medicine still faces several hurdles, in-
cluding high biomarker costs, prolonged turnaround 
times, and limited accessibility. Identifying suitable 
biomarkers often requires expensive testing, making 
access difficult for many patients, especially those in 
rural areas. These high costs also hinder widespread 
insurance coverage.

NLRP3 Inhibitors
Numerous cell types, including neutrophils, 
macrophages, microglia, lymphocytes, epithelial 
cells, osteoblasts, neurons and dendritic cells, 
express the 118-kDa cytosolic pattern-recognition 
receptor (PRR) NLRP3. The NLRP3 protein com-
prises an N-terminal pyrin (PYD) domain that
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or translation. Besides messenger RNAs, miRNAs
have been reported to interact with small nuclear,
ribosomal, transfer and long non-coding RNAs, al-
though the functional significance of these interac-
tions remains unclear. Because they are key reg-
ulators of haematopoiesis, immune-cell differentia-
tion, immune responses, inflammation and autoim-
munity, miRNAs offer a promising therapeutic av-
enue. Notably, miR-146 and miR-155 influence ac-
tivation of the host defence system, thereby modu-
lating immune regulation and inflammatory seque-
lae. Through miRNAs, both positive and negative
regulatory events can affect the initiation, propaga-
tion and resolution phases of inflammation61. Pos-
itive feedback initiates a series of molecular pro-
cesses that limit microbial invasion and promote
efficient tissue repair, whereas negative feedback,
triggered only during severe inflammation, is essen-
tial to maintain tissue homeostasis and to prevent
detrimental end-stage responses62.

Limitations
Current pharmacological strategies for manag-
ing inflammation include corticosteroids, disease-
modifying antirheumatic drugs (DMARDs), bio-
logics, and non-steroidal anti-inflammatory drugs
(NSAIDs). Although these agents are effective, they
present several significant limitations:

Safety concerns
Biologics: Agents such as tumour necrosis factor-α
(TNF-α) antagonists (e.g., infliximab, adalimumab,
and etanercept) have revolutionised the treatment
of rheumatoid arthritis and inflammatory bowel dis-
ease. However, as noted by Hindryckx et al., their
use is associated with an increased risk of infec-
tions, including the reactivation of latent tubercu-
losis, which is particularly problematic in immuno-
compromised individuals63.
Traditional anti-inflammatory drugs: Prolonged
NSAID therapy, while useful for short-term symp-
tom control, is linked to gastrointestinal complica-
tions (e.g., ulcers, bleeding) and an elevated car-
diovascular risk. Long-term corticosteroid admin-
istration, despite potent anti-inflammatory effects,
may induce immunosuppression, osteoporosis, and
metabolic disturbances.
Adverse effects with long-term use: Low-dose
methotrexate (LD-MTX), a mainstay in rheumatoid
arthritis, has been associated with interstitial lung
disease, hepatotoxicity, and a heightened suscepti-
bility to infection—particularly in patients with type

2 diabetes. A clinical trial of canakinumab high-
lighted these hazards, reporting a 67 % infection rate
over two years compared with 25 % in the placebo
group 64.

Efficacy limitations
Variable response: Clinical responses to anti-
inflammatory therapy are heterogeneous, especially
when treatment is initiated after disease onset. Sus-
tained remissions are uncommon, and some pa-
tients develop neutralising antibodies against bio-
logics, resulting in primary non-response or sec-
ondary loss of efficacy 65.
Disease-specific challenges: In atherosclerosis,
anti-inflammatory approaches must surpass the
benefits conferred by statins; moreover, inhibition
of monocytosis may impair infarct healing and post-
myocardial infarction remodelling.
Redundancy and compensation: Given the ex-
tensive network of cytokines and mediators, target-
ing a single pathway (e.g., TNF-α) may be insuffi-
cient. Compensatory mechanisms can exacerbate
disease, as illustrated by murine studies in which
TRAF6 or NF-κB blockade worsened atherosclero-
sis 66.

Future directions
Personalised medicine aims to tailor therapy ac-
cording to individual genetic and biomarker profiles
to enhance efficacy and minimise adverse effects.
For example, patients who are positive for anti-
citrullinated protein antibodies (ACPA) or have ele-
vated C-reactive protein (CRP) and erythrocyte sed-
imentation rate (ESR) often exhibit a more aggres-
sive course of rheumatoid arthritis and may benefit
from early, intensive interventions such as TNF in-
hibitors 67, 68, 69, 70, 71, 72, 73.

CONCLUSION
Up-to-date information on inflammation and anti-
inflammatory pharmacotherapy has been compiled
herein. The roles of immune cells and signal-
ing molecules in triggering inflammatory responses
are discussed. Additionally, the mechanisms of
chronic inflammation, its contribution to disease
pathogenesis, therapeutic strategies, novel targets
for inflammation, and traditional non-steroidal
anti-inflammatory drug (NSAID) treatment are ex-
plored. The potential of precision and personalized
medicine is also emphasized. Patients with a more
aggressive course of rheumatoid arthritis may ben-
efit from earlier and more intensive therapies, such
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