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ABSTRACT
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by
the accumulation of amyloid-β (Aβ ) peptide and hyperphosphorylated, cleaved forms of the
microtubule-associated protein tau. The probability of developing AD increases with age, mainly
because the burdens of Aβ and tau pathology grow over time. Aβ plaques are composed of
amyloid-β generated when β - and γ-secretases cleave the amyloid precursor protein (APP); these
extracellular deposits disrupt neuronal homeostasis and ultimately trigger cell death. Neurofib-
rillary tangles formed by hyperphosphorylated tau compromise neuronal architecture and im-
pair intracellular transport. This article discusses the formation of Aβ plaques and tau tangles as
well as their potential modulation or clearance through interventions targeting molecules such as
glycogen synthase kinase-3 (GSK-3) and fragment crystallizable receptors (FcRs). We also review
the structures, mechanisms of action, neuropathological consequences, and synergistic effects
of Aβ accumulation and tau phosphorylation. Monoclonal antibodies, including aducanumab
and lecanemab, can slow plaque formation, neutralize Aβ toxicity, stimulate immune-mediated
clearance, and remove existing aggregates. Tau-directed antibodies such as semorinemab and
tilavonemab are currently in clinical trials and aim to lessen tau aggregation, stabilize microtubules,
and inhibit pathogenic kinase activity. Advanced drug-delivery systems (e.g., exosome-loaded or
peptide-conjugated nanoparticles)may facilitate the development ofmore precise, safer, andmore
potent therapeutics for AD.
Key words: Alzheimer's disease, Amyloid β plaque, Neurotoxicity, Monoclonal antibody, Tau
tangles, Neuroinflammation

INTRODUCTION
Alzheimer’s disease is a neurodegenerative condi-
tion characterized by progressive forgetfulness, cog-
nitive decline, impaired physical function, and ul-
timately death resulting from widespread neuronal
loss1. Alzheimer’s disease (AD) is named after Dr.
Alois Alzheimer, a German physician and patholo-
gist who reported the first patient with the disorder
in 19062. Alzheimer’s disease is one of the great-
est medical challenges of this century and the lead-
ing cause of dementia3. Globally, approximately 40
million people are estimated to have dementia, a fig-
ure projected to double roughly every two decades
and to exceed 80 million by 20504. The prevalence
of AD rises with age, increasing from about 27.6 %
among individuals aged 65–74 years to roughly 36.4
% in those over 80 years5. AD pathology is char-
acterized primarily by the formation of amyloid-β
(Aβ ) plaques and neurofibrillary tau tangles result-
ing from the accumulation of hyper-phosphorylated
tau protein in the brain6. Aβ plaques are in-
soluble fibrillar structures composed of aggregated

Aβ peptides in the extracellular space, whereas tau
tangles are intracellular aggregates of abnormally
phosphorylated tau protein that destabilize micro-
tubules7,8. The interplay between these lesions is
believed to drive the symptomatic progression of
AD. Alzheimer’s disease typically begins insidiously
with difficulty remembering recent events and pro-
gresses gradually over time9. Acetylcholine (ACh),
a neurotransmitter first isolated in 1867 and respon-
sible for transmitting impulses between neurons as
well as to voluntary and involuntary muscle cells, is
found at reduced concentrations in the brains of in-
dividuals with AD10.

METHODS
The present review utilized a range of scholarly
search engines—Google Scholar, Semantic Scholar,
ScienceOpen, and PubMed—as well as journal
databases to identify recent primary and review
articles. The search combined the keywords
“Alzheimer’s disease,” “amyloid-β plaques,” “neu-
rotoxicity,” “monoclonal antibodies,” “tau tangles,”
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“clinical trials,” and “neuroinflammation.” Inclusion
criteria were English-language, peer-reviewed stud-
ies that addressed pathophysiology, pharmacologi-
cal clinical trials, or drug-delivery advancements. In
total, 138 articles published between 2011 and 2025
were selected for this review.

AMYLOID β PLAQUES AND TAU
TANGLES: THE CORE
PATHOLOGY
Aβ plaques and tau tangles are now more thor-
oughly understood as pathologies of Alzheimer’s
disease (AD). Both tau tangles and Aβ plaques are
implicated in neurotoxic effects (Figure 111,12). The
interactions betweenAβ and tau aremajor drivers of
neurotoxicity, suggesting that these two AD patho-
logical components synergistically increase neu-
ronal damage. New phosphorylation sites of tau
have been identified, and an understanding of tau
seeding and spreading has deepened insight into tau
pathology. These findings explain how tau spreads
throughout neuronal networks and causes axonal
degeneration in mammals13.

Aβ Plaques
Formation and Accumulation
Alzheimer’s disease is characterized by extracellu-
lar Aβ plaques whose precise pathogenesis remains
incompletely understood. These plaques develop
from the amyloid precursor protein (APP), which is
cleaved by β - and γ-secretases. The resulting Aβ
peptides are deposited in the brain, form insolu-
ble plaques, impair cellular function, and ultimately
drive neurodegeneration11.

Proteolytic Processing of APP

The processing of APP, a transmembrane glycopro-
tein expressedmainly in neurons, generates Aβ pep-
tides14. APP can follow either a non-amyloidogenic
or an amyloidogenic pathway.
• Cleavage by β -Secretase (BACE1): APP is first
cleaved by β -secretase, an aspartyl protease, in its
extracellular domain. This cleavage produces two
fragments: soluble APPβ (sAPPβ ), which is released
extracellularly, and the membrane-tethered C99 (β -
CTF). C99 is the critical substrate for γ-secretase15.
• Cleavage by γ-Secretase: The multi-protein γ-
secretase complex processes C99 within its trans-
membrane region, releasing Aβ peptides into the ex-
tracellular space and an intracellular APP domain
(AICD). The most abundant isoforms are Aβ40 and
Aβ4216. Aβ42 is highly aggregation-prone and

constitutes the principal building block of amyloid
plaques17.

Oligomerization of Aβ
Aβ peptides self-associate; Aβ42 aggregates more
readily than Aβ40 because of its hydrophobic C-
terminal end18. Aggregation proceeds from soluble
monomers to toxic oligomers that disrupt neuronal
signaling and synaptic plasticity, then to protofibrils,
and finally to mature fibrils and plaques19.

Formation of Amyloid Fibrils

Protofibrils assemble into insoluble amyloid fibrils
that form the structural core of plaques20. These
fibrils adopt a characteristic cross-β -sheet confor-
mation, conferring high stability and resistance to
degradation21,22.

Deposition and Plaque Development

Amyloid fibrils coalesce into extracellular deposits
that constitute amyloid plaques, which are sur-
rounded by dystrophic neurites, activated astrocytes
and microglia, and extracellular matrix components
such as apolipoprotein E (ApoE)23,24.
Genetic mutations in APP, presenilin-1, or
presenilin-2 (components of γ-secretase) increase
Aβ42 production. The ApoE ε4 allele promotes
aggregation and inhibits clearance. Impaired
activity of Aβ -degrading enzymes (e.g., neprilysin)
or reduced transport across the blood–brain barrier
further enhances accumulation25.

Tau Tangles
Tau Phosphorylation and Aggregation
Tau is a microtubule-associated protein (MAP) that
stabilizes microtubules in neurons. Hyperphospho-
rylated tau detaches from microtubules, aggregates,
impairs axonal transport, and ultimately causes neu-
ronal death13.

Formation and Function of Tau Protein
Tau is encoded by the MAPT gene on chromo-
some 17, which generates six isoforms via alterna-
tive splicing differing in their microtubule-binding
repeats (3R vs. 4R) and N-terminal inserts. Native
tau is intrinsically disordered, enabling dynamic in-
teraction with microtubules26.

Pathological Transition of Tau
Under pathological conditions tau becomes hyper-
phosphorylated by kinases such as GSK-3β and
CDK527. Detached tau undergoes conformational
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Figure 1: Pathophysiology of Alzheimer’s Disease.

changes, forms soluble toxic oligomers, and then
paired helical filaments (PHFs) and straight fila-
ments (SFs). These filaments aggregate into neu-
rofibrillary tangles (NFTs) that can propagate in a
prion-like manner28.

Post-Translational Modifications (PTMs)
PTMs profoundly influence tau behavior. Hyper-
phosphorylation drivesmislocalization and aggrega-
tion; acetylation hinders degradation; ubiquitination
can target tau for proteasomal clearance or stabilize
aggregates; truncation yields highly aggregation-
prone fragments; and glycation further enhances ag-
gregation propensity29.
Pathological tau disrupts microtubule integrity, ax-
onal transport, synaptic plasticity, and mitochon-
drial function, and it induces neuroinflammation, all
of which culminate in neuronal death30.
Tau pathology is promoted byMAPTmutations (e.g.,
P301L and the H1 haplotype)31, PTMs29, oxidative
stress and neuroinflammation32, and an imbalance
between kinases (e.g., GSK-3β ) and phosphatases
(e.g., PP2A)33.

Combined Impact on Cognitive Decline

The connection between Aβ and tau pathologies is
robust. Whereas Aβ plaques contribute to early
synaptic impairment and prodromal clinical symp-
toms, tau tangles correlate directly with neuronal
loss and the severity of cognitive decline34.

Synergistic Effects

Aβ and tau pathologies are not independent; they in-
teract sequentially and synergistically. Aβ plaques
are thought to appear first, triggering cascades
that lead to tau hyperphosphorylation and aggrega-
tion35.

MECHANISM OF ACTION OF Aβ
AND TAU TARGETING DRUG
Aβ Targeting
Monoclonal antibodies (mAbs) are lab-engineered,
Y-shaped protein structures36 composed of two
heavy and two light chains. The variable region
(Fab) at the ends binds to the target antigen37, while
the constant region (Fc) interacts with immune-
cell receptors38. The binding of mAbs to Aβ—in

7710



Biomedical Research and Therapy 2025, 12(9):7708-7722

its soluble or plaque form—activates immune pro-
cesses such as phagocytosis via Fc receptors on mi-
croglia, thereby facilitating plaque removal. Com-
plement receptors also enhance clearance through
the complement cascade39,40. Although effective
in promoting Aβ clearance, mAbs may induce in-
flammation through activation of Toll-like receptors
(TLRs)41,42. Drugs such as aducanumab exploit this
mechanism to target Aβ and trigger microglial ac-
tivation for plaque clearance, though their effects
can be complex and require careful management43.
Amyloid-related imaging abnormalities are serious
side-effects of anti-Aβ antibodies (e.g., aducanumab,
lecanemab, gantenerumab). Edema (ARIA-E) and
hemosiderin-related hemorrhages (ARIA-H) are as-
sociated with disruption of the blood–brain barrier
following amyloid clearance from cerebral vessels44.
APOE-ε4 carriers face an increased risk. Symptoms
include headaches, confusion, and seizures. Regu-
lar MRI monitoring is required for early detection,
and dose adjustments may be necessary in severe
cases45.

Aducanumab
Aducanumab is a monoclonal antibody that targets
Aβ and reduces plaque accumulation in patients
with Alzheimer’s disease (AD) (Table 1)46. Several
clinical studies show that aducanumab can slow cog-
nitive decline in patients at an early stage of AD52.
The aducanumab controversy was sparked by con-
flicting Phase 3 trial results (ENGAGE vs. EMERGE)
and differing FDA-review interpretations. EN-
GAGE did not reach its primary endpoint, whereas
EMERGE showed a modest slowing of cognitive de-
cline53.

Lecanemab
Lecanemab is a monoclonal antibody directed
against soluble Aβ protofibrils; it decreases amy-
loid plaques and clinical manifestations in early
AD54. By neutralizing protofibrils, lecanemab re-
duces new-plaque formation and maintains a lower
amyloid burden47. Collectively, trial data indicate
that lecanemab delays both cognitive and functional
decline. Study NCT03887455 (Table 2) showed that
lecanemab significantly slowed clinical decline in
early AD (CDR-SB; p < 0.0001)55.

Gantenerumab
Gantenerumab is an antibody that binds aggre-
gated Aβ and facilitates its removal from the
brain48. Emerging studies suggest that gan-
tenerumab reduces amyloid plaques and improves

cognition. Although its mechanism resembles that
of aducanumab, gantenerumab is delivered subcuta-
neously, a route that may enhance treatment adher-
ence if approved12,64. Ongoing trials are evaluating
its efficacy, safety, and potential to slow early AD
progression.

Tau-Targeting
Therapies that target tau tangles modulate several
receptors and molecular partners. One key target is
the microtubule-associated protein tau65. Glycogen
synthase kinase-3 (GSK-3) inhibitors and mitogen-
activated protein kinase (MAPK) inhibitors both re-
duce tau phosphorylation66. Because MAPKs medi-
ate stress- and inflammation-related signaling, their
down-regulation lessens phosphorylation and in-
flammation. These interactions decrease tau ag-
gregation, stabilize microtubules, and reduce tau-
induced neurotoxicity, thereby helping to maintain
neuronal function and limiting tau’s prion-like prop-
agation67.

Tau antisense oligonucleotides (ASOs)
Tau ASOs are short synthetic single-stranded RNAs
or DNAs designed to bind a specific sequence within
tau (MAPT) mRNA, thereby reducing tau transla-
tion68.
Mechanism of Action: Tau ASOs hybridize via
Watson–Crick base pairing with taumRNA, forming
an RNA–DNA duplex that recruits RNase H, which
cleaves the RNA strand69. RNaseH–mediated cleav-
age is catalytic, so multiple mRNAs can be degraded.
Lower tau levels limit formation of hyperphospho-
rylated tau, paired helical filaments, and neurofib-
rillary tangles70. Reduced aggregates lessen axonal
transport disruption and neuronal dysfunction71.
IONIS-MAPTRx, delivered intrathecally, has shown
significant reductions in cerebrospinal-fluid tau lev-
els in early trials72.

Anti-tau antibodies
Anti-tau antibodies are therapeutic mAbs that bind
pathological tau conformations in AD48. They are
in various clinical and preclinical stages73.
Biomarker validation in AD still faces challenges of
specificity, sensitivity, and clinical utility. Reliable
biomarkers (Aβ , tau, NfL) must distinguish AD from
other neurodegenerative disorders and track disease
progression. Blood biomarkers are less invasive than
CSF or PET but currently offer lower specificity.
Translating biomarker findings into clinical practice
therefore remains difficult11,27.

7711



Biomedical Research and Therapy 2025, 12(9):7708-7722

Ta
bl
e
1:

M
ec
ha

ni
sm

of
ac
ti
on

As
pe
ct

Ad
uc
an
um

ab
Le
ca
ne
m
ab

Ga
nt
en
er
um

ab

Ta
rg
et

Ag
gr
eg
at
ed

A
β
(A

β
)p

la
qu

es
an
d
so
lu
bl
e
ol
ig
om

er
s

So
lu
bl
e
A

β
(A

β
)p

ro
to
fib

ril
s

Ag
gr
eg
at
ed

A
β
(A

β
)p

la
qu

es

M
ec
ha
ni
sm

of
Ac

tio
n

1.
Bi
nd

sa
gg

re
ga
te
d
A

β
pl
aq
ue
sa

nd
ol
ig
om

er
s.
2.

Fc
re
gi
on

ac
tiv

at
es

m
ic
ro
gl
ia
fo
rp

la
qu

ec
le
ar
an
ce
.3

.R
ed
uc
es

am
yl
oi
d

bu
rd
en
,n

eu
ro
in
fla
m
m
at
io
n,

an
d
slo

w
sc

og
ni
tiv

e
de
cl
in
e.

46

1.
Bi
nd

s
so
lu
bl
e
A

β
pr
ot
ofi

br
ils

to
pr
ev
en
t

pl
aq
ue

fo
rm

at
io
n.

2.
Ac

tiv
at
es

m
ic
ro
gl
ia

to
cl
ea
rp

ro
to
fib

ril
sa

nd
pl
aq
ue
s.
3.

Sl
ow

sc
og

ni
-

tiv
e
de
cl
in
e
by

re
du

ci
ng

am
yl
oi
d
bu

rd
en
.4
7

1.
Bi
nd

sa
gg
re
ga
te
d
A

β
pl
aq
ue
s.
2.

D
isa

gg
re
-

ga
te
sp

la
qu

es
an
da

ct
iv
at
es

m
ic
ro
gl
ia
fo
rc
le
ar
-

an
ce
.3

.R
ed
uc
es

am
yl
oi
d
bu

rd
en

an
d
in
hi
bi
ts

ne
w
pl
aq
ue

fo
rm

at
io
n.

48

Effi
ca
cy

Re
du

ce
sa

m
yl
oi
d
bu

rd
en

an
d
slo

w
sc

og
ni
tiv

ed
ec
lin

ei
n
ea
rly

A
D.

49
D
el
ay
sc

og
ni
tiv

e
an
d
fu
nc
tio

na
ld

ec
lin

e,
w
ith

po
sit
iv
e
re
su
lts

in
ea
rly

A
D.

50
Re

du
ce
sa

m
yl
oi
d
pl
aq
ue
s,
bu

tc
lin

ic
al
effi

ca
cy

in
co
gn

iti
ve

de
cl
in
e
is
st
ill

un
de
rs

tu
dy
.

Ad
ve
rs
e
Eff

ec
ts

A
m
yl
oi
d
re
la
te
d
im

ag
in
g
ab
no

rm
al
iti
es

(A
RI
A)
,i
nc
lu
di
ng

br
ai
n
sw

el
lin

g(
A
RI
A-
E)

an
dm

ic
ro
he
m
or
rh
ag
es

(A
RI
A-
H
).4

6
A
RI
A

w
as

ob
se
rv
ed

bu
ta

ta
lo
w
er

in
ci
de
nc
e

co
m
pa
re
d
to

Ad
uc
an
um

ab
.5
1

A
RI
A-
E
an
d
A
RI
A-
H
,b

ut
ty
pi
ca
lly

at
a
lo
w
er

in
ci
de
nc
e
th
an

Ad
uc
an
um

ab
.4
8

N
ov
el
ty

Fo
cu
se
d
on

pl
aq
ue

cl
ea
ra
nc
e
in

ea
rly

-s
ta
ge

A
D.

52
Ta

rg
et
sp

r o
to
fib

ril
s,
an

eu
ro
to
xi
ci
nt
er
m
ed
ia
te

fo
rm

of
A

β
.5
0

Su
bc
ut
an
eo
us

de
liv

er
y,
po

te
nt
ia
lly

im
pr
ov
in
g

pa
tie

nt
co
m
pl
ia
nc
e.

12

7712



Biomedical Research and Therapy 2025, 12(9):7708-7722

Ta
bl
e
2:

C
lin

ic
al

tr
ia
lr
es
ul
ts

w
it
h
du

ra
ti
on

lim
it
at
io
n
an

d
co

nt
ro
ve

rs
y

D
ru
g

N
CT

N
um

be
r

Tr
ia
lP

ha
se

/D
ur
at
io
n

Li
m
ita

tio
ns

Co
nt
ro
ve
rs
ie
s

St
at
ist
ic
al
O
ut
co
m
es

Ad
uc
an
um

ab
N
CT

01
39
75
39

56
Ph

as
e
1
(2
01
1–

20
13
)
53

pa
rti
ci
pa
nt
s

Sm
al
ls
am

pl
e,
sin

gl
e-
do

se
,s
ho

rt
fo
llo

w
-u
p;

effi
ca
cy

as
se
ss
m
en
t

no
tp

os
sib

le
.

A
RI
A-
E
(1
00
%

in
60

m
g/
kg

gr
ou

p)
;

ea
rly

sa
fe
ty

co
nc
er
n
bu

tl
im

ite
d
co
n-

tro
ve
rs
y
du

e
to

ph
as
e
an
d
siz

e.

D
os
e-
de
pe
nd

en
t
A
RI
A-
E

(1
00
%

at
60

m
g/
kg

);
lin

ea
r
PK

up
to

30
m
g/
kg

;c
og

-
ni
tio

n
no

ts
ta
tis
tic

al
ly

sig
ni
fic
an
t.

N
CT

01
67
75
72

57
Ph

as
e1

b
(2
01
2–

20
19
)1
97

pa
rti
ci
pa
nt
s

Sm
al
l
sa
m
pl
e;

sh
or
t
fo
llo

w
-u
p;

fo
cu
se
d

on
am

yl
oi
d

re
du

ct
io
n

no
te

ffi
ca
cy
.

M
ild

co
nc
er
n;

no
m
aj
or

co
nt
ro
ve
rs
y.

Si
gn

ifi
ca
nt

(p
<

0.0
5)

do
se
-d
ep
en
de
nt

pl
aq
ue

re
du

ct
io
n

on
PE

T;
A
RI
A

in
ci
-

de
nc
e
in
cr
ea
se
d
w
ith

do
se
.

N
CT

02
47
78
00

(E
M
ER

GE
)5

8,
59

Ph
as
e

3
(2
01
5–

20
19
)

~
1,6

00
pa
rti
ci
pa
nt
s

Ea
rly

te
rm

in
at
io
n;

in
co
ns
ist
en
t

ou
tc
om

es
;

po
st
-h
oc

an
al
ys
is;

po
te
nt
ia
l

un
bl
in
di
ng

du
e

to
A
RI
A
.

FD
A
ap
pr
ov
al
de
sp
ite

ad
vi
so
ry

pa
ne
l

re
je
ct
io
n;

EM
ER

GE
po

sit
iv
e,

EN
-

GA
GE

ne
ga
tiv

e;
re
sig

na
tio

ns
fro

m
FD

A
bo

ar
d.

22
%
de
cl
in
e
re
du

ct
io
n
(C
D
R-
SB

−
0.3

9;
p

=
0.0

12
);
A
RI
A-
E
in

35
%
of

A
PO

E
ε4
+
pa
-

tie
nt
s.

N
CT

02
48
45
47

(E
N
-

GA
GE

)5
8,
59

Ph
as
e

3
(2
01
5–

20
19
)

~
1,6

00
pa
rti
ci
pa
nt
s

Sa
m
e
as

EM
ER

GE
; d

os
e
m
od

ifi
-

ca
tio

n;
no

sig
ni
fic
an
te

ffe
ct
.

Sa
m
e
as

EM
ER

GE
;

N
o
sig

ni
fic
an
t
eff

e c
t;

in
co
ns
ist
en
t
w
ith

EM
ER

GE
.

N
CT

04
24
10
68

60
Ph

as
e3

Ex
te
ns
io
n
(2
02
0–

20
23
)2

,40
0
pa
rti
ci
pa
nt
s

N
o
co
nt
ro
lg

ro
up

;l
im

ite
d
to

10
m
g/
kg

;
sin

gl
e

do
se

re
po

rti
ng

;
un

cl
ea
rp

ar
tic

ip
an
tn

um
be
r.

Co
nt
in
ue
d

A
RI
A

co
nc
er
n;

tre
at
-

m
en
t
di
sc
on

tin
ua
tio

ns
du

e
to

ad
-

ve
rs
e
ev
en
ts
;A

DA
po

sit
iv
ity

ra
ise

d
to
le
ra
bi
lit
y
iss

ue
s.

D
et
ai
le
d
st
at
ist
ic
al

ou
tc
om

es
no

t
av
ai
l-

ab
le
du

e
to

st
ud

y
te
rm

in
at
io
n.

Le
ca
ne
m
ab

N
CT

03
88
74
55

54
,6
1

Ph
as
e

3
(C
la
rit
y

A
D,

20
19
–2

02
2)

1,7
95

pa
rti
ci
-

pa
nt
s

Ta
rg
et
ed

on
ly
ea
rly

A
D
;a
m
yl
oi
d

co
nfi

rm
at
io
n
re
qu

ire
d;

ge
ne
ra
l-

iz
ab
ili
ty

lim
ite

d.
62

D
eb
at
e
ov
er

cl
in
ic
al

sig
ni
fic
an
ce

of
sm

al
lC

D
R-
SB

ch
an
ge

(0
.45

);
A
RI
A-
E

(1
2.6

%)
,A

RI
A-
H
(1
7.3

%)
de
sp
ite

m
ild

se
ve
rit
y.

H
ig
hl
y
sig

ni
fic
an
t
(p

<
0.0

00
1)
;
slo

w
ed

cl
in
ic
al

de
cl
in
e;

im
pr
ov
ed

CD
R-
SB

,
A
DA

S-
Co

g1
4,

iA
D
L,

M
M
SE

;
PE

T
co
nfi

rm
ed

am
yl
oi
d
re
du

ct
io
n.

Ga
nt
en
er
um

ab
N
CT

03
44
48
70

63
Ph

as
e3

(G
RA

D
UA

TE
I/I
I,

20
18
–2

02
3)

1,0
53

pa
rti
ci
-

pa
nt
s

Fa
ile
d
pr
im

ar
y
en
dp

oi
nt

(C
D
R-

SB
);

no
sig

ni
fic
an
t

co
gn

iti
ve

be
ne
fit
;
m
od

es
t
tre

nd
s
in

se
c-

on
da
ry

ou
tc
om

es
.

Fo
cu
se
d

on
am

yl
oi
d

re
du

ct
io
n

de
-

sp
ite

fa
ile
d
co
gn

iti
ve

ou
tc
om

es
;s
ub

-
cu
ta
ne
ou

s
ro
ut
e
pr
ai
se
d
fo
r
co
m
pl
i-

an
ce

bu
tr
ai
se
d
co
nc
er
ns
.

N
on

-s
ig
ni
fic
an
t

CD
R-
SB

di
ffe

re
nc
e

(−
0.3

1;
95
%

CI
:
−
0.6

6
to

0.0
5)
;
sig

-
ni
fic
an
t

am
yl
oi
d

re
du

ct
io
n;

A
RI
A-
E

ob
se
rv
ed

in
no

ta
bl
e
pr
op

or
tio

n.

7713



Biomedical Research and Therapy 2025, 12(9):7708-7722

Mechanism of Action: Anti-tau antibodies bind
hyperphosphorylated, oligomeric, or aggregated
tau, preventing its detachment from microtubules
and subsequent destabilization74. They block aggre-
gation of tau monomers/oligomers (Figure 2 ) into
paired helical filaments (PHFs) and neurofibrillary
tangles (NFTs)75. Fc-receptor engagement on mi-
croglia promotes phagocytosis of antibody–tau com-
plexes, followed by lysosomal degradation, thereby
reducing intra- and extracellular tau74. Restored
tau homeostasis stabilizes microtubules, maintains
axonal transport, and attenuates glia-mediated in-
flammation76. Anti-tau antibodies also preserve
neuronal-membrane integrity by neutralizing toxic
tau oligomers that disturb calcium balance and
synaptic function75.

Examples under investigation

• Semorinemab (Genentech/Roche) has shown
mixed results; initial trials were inconclusive, but
later studies suggest modest neuroprotective ef-
fects77–79.
• Zagotenemab (LY3303560, Eli Lilly) demonstrated
tau reduction and memory improvement in ani-
mals, yet early-stage human data remain inconclu-
sive80,81.
• Tilavonemab (ABBV-8E12, AbbVie), an IgG1-λ an-
tibody, lowered tau pathology and showed encour-
aging safety/biomarker signals in Phase 1-2 stud-
ies82,83. Trial M15-562 (Table 3) is a Phase 2,
double-blind, placebo-controlled study evaluating
low- and high-dose tilavonemab.84–87

Figure 2: Formation of Aβ and tautangles. Mechanism of action of drugs targeting amyloid plaques and tau
tangles. 1. Drugs (in the yellow background) targeted at specific sites are underclinical trial, some of which are
on the market, and some are discontinued. 2. � indicates a possible site or target for theprevention or removal of
plaque or tangles.
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Table 3: Clinical trial results with duration limitation and controversy

Compound Trial (NCT No. /
Phase)

Trial Details (Phase
/ Duration / Partici-
pants)

Limitations Controversy Statistical Results

Semorinemab NCT03289143 (Phase
2 – Tauriel)88,89

Phase 2 / 73 weeks /
457 patients withmild
AD

No significant benefit on sec-
ondary cognitive/functional
measures; limited sample size

Targeting tau at symptomatic
stage questioned; no dose-
dependent efficacy

Failed primary endpoint (CDR-SB,
p=0.37); no significant change
in ADAS-Cog13, ADCS-ADL;
ADAS-cog11 showed 42.2% reduc-
tion vs baseline (not statistically
confirmed)90

Zagotenemab NCT02754830 (Phase
1)91

Phase 1 / 2016–2018
/ 110 mixed partici-
pants (healthy + MCI
+ AD)

Small sample size; short dura-
tion; focus on safety, not effi-
cacy

Increase in tau not clinically
significant; unclear target en-
gagement

Linear pharmacokinetics; dose-
dependent increase in plasma tau;
no PET amyloid or MRI changes.92

NCT03019536 (Phase
1)93

Phase 1 / 2017–2019
/ 24 MCI-AD & mild
AD patients

Small size; short 16-week pe-
riod; no efficacy data

Debate continues due to Phase
2 failures

Safe; linear PK; no significant
biomarker changes; no clinical
efficacy

NCT03518073 (Phase
2)81,94

Phase 2 / 2018–2021 /
285 early AD patients

No clinical/biomarker benefit;
insufficient dose response

Plasma tau increased but
not linked to outcome; tau-
targeting still under debate

iADRS ratio > 1 for both doses; no
significant changes in PET tau, MRI,
NfL

Tilavonemab M15-562 (Phase 2 –
PSP)95,96

Phase 2 / 2016–2019 /
377 PSP patients aged
49–86

No improvement on clinical or
quality-of-life measures

Efficacy of tau-targeting in
PSP questioned; halted for in-
efficacy

No significant difference in PSPRS;
87.5% reported AEs, 25.5% had se-
vere AEs; study terminated early

AADvac1 NCT01850238 (Phase
1)97

Phase 1 / 2013–2015 /
Mild to moderate AD
patients

Short duration; small sample;
not designed for efficacy

Active tau immunotherapy
strategy under scrutiny

Safe; immunogenic; antibody
response observed; exploratory
biomarker trends

NCT02579252 (Phase
2 – ADAMANT)97

Phase 2 / 2016–2019 /
Mild AD patients

No significant cogni-
tive/functional benefits;
limited efficacy evidence

Modest post-hoc subgroup
findings require further
confirmation

>0.05 for clinical endpoints; safe
and immunogenic; no significant ef-
ficacy

ACI-35 NCT04445831 (Phase
1b/2a)45,98

Phase 1b/2a / 2019–
2023 / 57 MCI/mild
AD patients (age 50–
75)

Final results pending; short-
duration, individual-level data
undisclosed

Link between antibody re-
sponse and clinical benefit re-
mains unproven

Interim: significant increase in anti-
pTau IgG titers; no efficacy stats
available; strong immunogenicity
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• AADvac1 is an active vaccine developing a self-
immune response against pathological tau; Phase 1-
2 studies revealed robust immunogenicity and tau
reduction. Phase 3 is ongoing84,85 (NCT01850238;
NCT02579252).
•ACI-35, a liposome-based vaccine, elicited selective
anti-tau immunity in Phase 1 and is now in Phase 2
for efficacy evaluation86,87.

Combination Therapies and Novel Ap-
proaches
• Tau-aggregation inhibitor TRx0237 (LMTX) dis-
solves existing tangles and may halt or reverse de-
mentia progression99.
• Neuroinflammation modulators such as sar-
gramostim reduce immune dysregulation and may
improve cognition; mefenamic acid is under study
for similar effects100.
• NLRP3-inflammasome inhibitors (e.g., MCC950,
tetramethylpyrazine, kakonein) decrease neuroin-
flammation in preclinical AD models101–103.
• β -Site amyloid precursor-protein cleaving
enzyme-1 (BACE1) inhibitors (verubecestat,
lanabecestat) lower Aβ synthesis by inhibiting
β -secretase104. However, many agents (e.g.,
NB-360) were halted owing to adverse effects
such as hair depigmentation, anxiety, weight loss,
falls, suicidality, and sleep disorders. Umibecestat
(CNP520) advanced further because of higher
selectivity and favorable pharmacokinetics, yet
overall risks highlight the difficulty of targeting
amyloid pathways105,106.

DRUG DELIVERY SYSTEMS
TARGETING Aβ PLAQUES AND
TAU TANGLES
Nanoparticle-based delivery systems
Polymeric Nanoparticles: Polymeric nanoparti-
cles have been found to be useful for penetrating
the blood–brain barrier (BBB) and releasing drugs at
the target, i.e., Aβ plaques107,108. Experiments have
also shown that these nanoparticles can be function-
alized with targeting ligands that increase their se-
lectivity toward Aβ and therefore enhance the effi-
cacy of drug delivery and decrease the amyloid load
in the brain109,110.
Lipid Nanoparticles: Lipid nanoparticles have po-
tential in the encapsulation and distribution of ther-
apeutic agents that deal with Aβ and tau aggre-
gates111,112. These systems offer long-term stabil-
ity and controlled release, can cross the BBB, and
may reduce neurotoxicity while improving cognitive
function113.

Exosome-based delivery systems
Exosome Engineering: Small interfering RNAs
and other small molecules can be incorporated into
exosomes, naturally occurring vesicles 40–100 nm in
size, to target neurons114. Exosomes can enter the
brain and release their contents, specifically near Aβ
plaques and tau tangles115.
Exosome-Loaded Drug Carriers: Exosomes com-
bined with other delivery systems and nanoparti-
cles can increase the specificity and efficiency of
drug delivery. Preclinical studies of exosome-loaded
nanoparticles have shown their potential to target
Aβ and tau tangles116,117.

Peptide-based delivery systems
Peptide-Conjugated Nanoparticles: Nanoparti-
cles can be functionalizedwith high-affinity peptides
that specifically bind Aβ plaques and tau tangles,
resulting in enhanced targeting efficiency118. For
therapeutic applications, these peptide-conjugated
nanoparticles can effectively transport active agents,
including antibodies and small molecules, to patho-
logical regions to improve treatment outcomes and
minimize adverse effects119,120.
Cell-Penetrating Peptides (CPPs): CPPs are used
to carry therapeutically valuable agents across cell
membranes121. CPPs can be coupled with a drug or
genetic material to improve their uptake by neurons,
thereby directly targeting Aβ and tau damage and
possibly even altering the disease course122.

Liposome-based delivery systems
Immunoliposomes: Immunoliposomes, which are
liposomes linked with particular antibodies against
Aβ or tau, have been created to enhance drug-
delivery selectivity and effectiveness123. The BBB
permits only regulated entry of substances, pos-
ing a major challenge to delivering Alzheimer’s-
disease therapeutics into the brain. For large
molecules like monoclonal antibodies (e.g., adu-
canumab), transport is restricted, and this requires
an intravenous infusion or specialized methods of
delivery. Small-molecule drugs generally have ei-
ther low bioavailability or rapid clearance. Possi-
ble strategies include nanoparticle-based delivery,
receptor-mediated transcytosis, and focused ultra-
sound for temporary opening of the BBB to maxi-
mize therapeutic effects and minimize systemic side
effects. These systems can cross the BBB and thus
provide ligands to affected regions; consequently,
they have demonstrated their ability to reduce amy-
loid and tau accumulation in preclinical trials124,125.
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Multifunctional Liposomes: Liposomes with tar-
geting ligands, imaging agents, and therapeutic
agents are useful in the management of multiple as-
pects of this disease126. Liposomes can deliver and
release drugs, monitor the response and effective-
ness of treatment, and respond accurately to Aβ and
tau tangles127,128.

Limitations and Challenges in Drug-
Delivery Systems
• Blood–Brain Barrier (BBB) Permeability: The
BBB remains a major obstacle, limiting the ability of
therapeutic agents (especially large molecules and
biologics) to reach effective concentrations in the
brain parenchyma. At the molecular level, this bar-
rier limits transcytosis and receptor-mediated trans-
port unless specific ligands or transport mechanisms
are exploited129.
• Rapid Systemic Clearance: Nanoparticles, lipo-
somes, and other delivery vehicles are often rapidly
cleared by the reticuloendothelial system (RES),
leading to reduced circulation time and poor cen-
tral nervous system (CNS) bioavailability. This clear-
ance depends on molecular surface features such as
charge and hydrophilicity, which can reduce sys-
temic circulation and CNS accumulation130.
• Immunogenicity and Biocompatibility: Syn-
thetic carriers are recognized as foreign particles by
the immune system, which may trigger inflamma-
tory responses, immune clearance, or allergic reac-
tions. Minor changes in surface chemistry at the
molecular level (e.g., terminal groups, PEG density)
can dramatically affect immune recognition131.
• Inconsistent Physicochemical Properties:
Variability in nanoparticle synthesis can lead to
differences in size, surface charge, and morphology,
affecting drug-loading efficiency, release kinetics,
and targeting accuracy. Batch-to-batch variability in
nanoparticle synthesis (e.g., inconsistent nucleation
or polymerization rates) can alter critical parameters
like zeta potential, hydrodynamic diameter, and
surface-ligand density, which influence molecular
interactions with the BBB and target cells132.
• Potential toxicity of carriers: Some carrier ma-
terials or their degradation products (e.g., cationic
polymers, metal-based NPs) may generate reactive
oxygen species (ROS) or interfere with cellular or-
ganelles and enzymes, leading to molecular-level
toxicity133.
• Enzymatic degradation of peptides: Therapeu-
tic peptides are highly susceptible to proteolytic en-
zymes (e.g., peptidases, endopeptidases) in blood and

tissues, leading to cleavage at specific amino-acid
residues and a short systemic half-life. Structural
modification (e.g., D-amino acids, PEGylation) is of-
ten needed to enhance stability134.
• Cell-Penetrating Peptides: CPPs like TAT allow
drug entry via direct translocation or endocytosis,
but they lack receptor specificity and are prone to
enzymatic cleavage. Modifying CPPs with drugs can
change their conformation, reducing efficiency and
stability at the molecular level135.
• Exosome Production Challenges: Exosomes—
natural nanocarriers—are heterogeneous in compo-
sition (lipids, proteins, RNA). Isolating them in a re-
producible, scalable, and clinical-grade manner re-
quires controlling the molecular makeup, including
tetraspanins (e.g., CD63, CD81) and surface markers,
which is technically difficult136.
In addition to the points mentioned above, other
challenges in drug delivery include cargo hetero-
geneity in exosomes, limited stability and shelf-life
of formulations, weak correlation between pathol-
ogy clearance and cognitive benefit, poor transla-
tional value of preclinical models, and uncertain
long-term safety of novel delivery systems. Fur-
ther research is required to overcome these chal-
lenges and enhance the efficacy of CNS-targeted
therapies137,138.

CONCLUSION
In conclusion, Alzheimer’s-disease pathogenesis is
associated with neuronal death, disruption of synap-
tic connections, and changes in cognitive ability.
APP, upon degradation, produces Aβ , and these
plaques cause oxidative stress and inflammation that
affect neurons; they also interfere with normal neu-
ronal function.
Research in AD has shown that there is a relation-
ship between tau and Aβ pathologies, and these
findings have revealed a significant contribution of
these two proteins to the neurotoxicity that char-
acterizes AD. Monoclonal antibodies such as ad-
ucanumab or lecanemab have shown potential in
eradicating Aβ plaques efficiently. Because these
antibodies can bind to aggregated forms of Aβ , en-
hance immunological processes, and activate mi-
croglia, they contribute to the removal of these
aggregates. The main goals of tau-targeted ther-
apy are to stop tau phosphorylation, diminish tau
deposition, and stabilize microtubules via different
ligands, such as epothilones and kinase inhibitors.
Other immunotherapeutic techniques that promote
the removal of tau proteins from the brain have
also been developed and found useful. Similarly,
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drug-delivery methods involving the encapsulation
of peptides and nanoparticles or loading into exo-
somes make it possible to increase the activity and
specificity of the aforementioned therapeutics.
Overall, the above discussion reveals that the asso-
ciation between tau and Aβ pathologies is complex,
indicating that the development of AD therapeu-
tics requires multiple, complementary interventions
targeting several pathological factors. Subsequent
work will have to continue investigating the molec-
ular relationships between tau and Aβ to determine
how to design drugs that can effectively target these
pathways. Nevertheless, current and future research
aims to help those affected by this chronic disease
achieve a better prognosis and higher quality of
life, owing to advanced knowledge of the disease’s
pathophysiology and the continuing refinement of
therapeutic interventions.

ABBREVIATIONS
Aβ : Amyloid-β ; ACh: Acetylcholine; AD:
Alzheimer’s Disease; AICD: APP Intracellular Do-
main; ApoE: Apolipoprotein E; APP: Amyloid Pre-
cursor Protein; ARIA-E: Amyloid-Related Imaging
Abnormalities - Edema; ARIA-H: Amyloid-Related
Imaging Abnormalities - Hemosiderin; ASOs: An-
tisense Oligonucleotides; BACE1: Beta-site APP
Cleaving Enzyme 1; BBB: Blood-Brain Barrier;
β -CTF: β -C-Terminal Fragment; CDK5: Cyclin-
Dependent Kinase 5; CDR-SB: Clinical Dementia
Rating-Sum of Boxes; CNS: Central Nervous Sys-
tem; CPPs: Cell-Penetrating Peptides; CSF: Cere-
brospinal Fluid; Fab: Fragment, Antigen-Binding;
Fc: Fragment Crystallizable; FcRs: Fragment Crys-
tallizable Receptors; FDA: Food and Drug Ad-
ministration; GSK-3: Glycogen Synthase Kinase-
3; IgG1: Immunoglobulin G1; mAbs: Mono-
clonal Antibodies; MAP: Microtubule-Associated
Protein; MAPK: Mitogen-Activated Protein Kinase;
MAPT: Microtubule-Associated Protein Tau; MRI:
Magnetic Resonance Imaging; NFTs: Neurofib-
rillary Tangles; NfL: Neurofilament Light Chain;
NLRP3: NLR Family Pyrin Domain Containing
3; PET: Positron Emission Tomography; PHFs:
Paired Helical Filaments; PP2A: Protein Phos-
phatase 2A; PTMs: Post-Translational Modifica-
tions; RES: Reticuloendothelial System; RNA: Ri-
bonucleic Acid; ROS: Reactive Oxygen Species;
sAPPβ : soluble APPβ ; SFs: Straight Filaments;
TLRs: Toll-like Receptors
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