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ABSTRACT
Introduction: Early Alzheimer's disease (AD) diagnosis is critical to improving the success of new
treatments in clinical trials, especially at the earlymild cognitive impairment (EMCI) stage. This study
aimed to tackle this problem by developing an accurate classificationmodel for early AD detection
at the EMCI stage based on magnetic resonance imaging (MRI). Methods: This study developed
the proposed classificationmodel through amachine-learning pipelinewith threemain steps. First,
features were extracted from MRI images using FreeSurfer. Second, the extracted features were fil-
tered using principal component analysis (PCA), backward elimination (BE), and extreme gradient
(XG)-Boost importance (XGBI), the efficiency of which was evaluated. Finally, the selected features
were combined with cognitive scores (Mini Mental State Examination [MMSE] and Clinical Demen-
tia Rating [CDR]) to create an XG-Boost three-class classifier: AD vs. EMCI vs. cognitively normal
(CN). Results: The MMSE and CDR had the highest importance weights, followed by the thickness
of the left superior temporal sulcus and banks of the superior temporal lobe. Without feature se-
lection, the model had the lowest accuracy of 69.0%. After feature selection and the addition of
cognitive scores, the accuracy of the PCA, BE, and XGBI approaches improved to 74.0%, 90.9%, and
91.5%, respectively. The BE with tuning parameters model was chosen as the final model since it
had the highest accuracy of 92.0%. The area under the receiver operating characteristic curve for
the CN, AD, and EMCI classes were 0.98, 0.94, and 0.88, respectively. Conclusion: Our proposed
model shows promise in early AD diagnosis and can be fine-tuned in the future through testing on
a multi-dataset.
Key words: Alzheimer's disease, Early mild cognitive impairment, early diagnosis, three-class
classification, XG- Boost

INTRODUCTION
Alzheimer’s disease (AD) is the most common neu-
rodegenerative disorder that greatly reduces patients’
quality of life and makes them utterly dependent on
their caregivers1,2. Prolonged medical treatment and
care exert a substantial economic strain on patients
and their families, potentially costing >1.1 trillion US
dollars worldwide1. Unfortunately, once cognitive
symptoms manifest, current medications cannot re-
verse disease progression due to the continued loss
of neurons without replacement by cell division3,4.
Therefore, identifying patients at the earlymild cogni-
tive impairment (EMCI) stage is critical to improving
the success of new treatments or interventions in clin-
ical trials.
Several breakthrough approaches have attempted to
predict AD at its preclinical stage, which could allow
the application of medications to halt AD develop-
ment from its onset3,5–8. About 80% of patients di-
agnosed with mild cognitive impairment (MCI) con-
vert to AD within six years9. Recent studies have fo-

cused on this transitional phase to detect the preclini-
cal AD stage, particularly EMCI5. One promising ap-
proach to detect EMCI is identifying brain morpho-
logical changes through neuroimaging data, such as
magnetic resonance imaging (MRI).
Early AD detection using brain MRI data remains
clinically challenging since the subtle changes dur-
ing its transitional period cannot be assessed man-
ually 3. Automatic computation and artificial intel-
ligence (AI) approaches such as deep learning (DL)
or machine learning (ML) are required to identify
brain structural features at the EMCI stage. Of nu-
merous AI-assisted methods, DL has been broadly
used because of its high performance, especially the
convolutional neural network (CNN)5,10. Kang et
al. combined a 2D CNN with transfer learning to
identify EMCI by processing a multi-modal dataset
(MRI and diffusion tensor imaging data), achieving
the highest accuracy of 94.2% for cognitively normal
(CN) vs. EMCI patients5. In addition, Kolahkaj et
al. built a DL architecture based on the BrainNet
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CNN model to detect EMCI, achieving high accura-
cies for binary classification: 0.96, 0.98, and 0.95 for
NC/EMCI,NC/MCI, andEMCI/MCI, respectively 11.
Despite its significant results, DL has several limita-
tions that could hinder clinical applications. Firstly,
DL models are prone to encounter overfitting due
to the many parameters considered12. Secondly,
analysts cannot provide a plausible explanation for
the algorithm’s performance, which is called a black
box. Therefore, to build an understandable prediction
model, making the shift to ML for early AD detection
is beneficial for neurologists and doctors.
While most ML studies have focused on binary clas-
sification, some have focused on multi-class classi-
fication. However, there is a growing need for a
multi-class algorithm that can effectively distinguish
the prodromal stage (EMCI) from the array of other
stages (late MCI [LMCI], AD, and CN), enabling an
early AD diagnosis. Moreover, it is important to note
that existing multi-class ML models have low accura-
cies. In 2022, Techa et al. showed that a new model
based on three CNN architectures (DenseNet196,
VGG16, andResNet50) achieved 89% accuracy in dis-
criminating normal, very mild dementia, mild de-
mentia, moderate dementia, and AD13. Alorf et al.
implemented a Brain Connectivity-Based Convolu-
tional Network in 2022, which provided 84.03% ac-
curacy for six-class classification (AD, LMCI, MCI,
EMCI, subjective memory complaints, and CN)14.
Another major difficulty when identifying the ini-
tial AD stages is the subtle structural change in sub-
jects with EMCI. EMCI is elusive and cannot be rec-
ognized by the diagnostic criteria for AD15. Fur-
thermore, EMCI and MCI are highly heterogeneous
since they can be easily mistaken for multiple patho-
logical conditions, especially other neurodegenerative
diseases16,17. Therefore, EMCI classification requires
further evaluation and approaches to optimize its ef-
ficiency.
One potential ML model to address the early AD de-
tection challenge is extreme gradient boosting (XG-
Boost). XG-Boost is a scalable tree-based ensem-
ble learning implemented from the gradient boosting
system. It introduces errors from the previous weak
learner to the latter learner, improving its learning ac-
curacy 18. Since its results depend on many decision
trees, XG-Boost shows high compatibility, competi-
tive execution speed, and accuracy when applied to
large data sets, making it suitable for clinical applica-
tion19. While few studies have used XG-Boost for AD
diagnosis, the preliminary results are promising. Ong
et al. proposed an XG-Boost model to classify AD

and CN subjects using the FreeSurfer library to ex-
tract insight features fromMRI, achieving an area un-
der the receiver operative characteristic (ROC) curve
(AUC) of 91%20. Tuan et al. presented an XG-Boost
model to classify AD and normal subjects based on
the tissues segmented by a CNN and Gaussian mix-
ture model21. Their highest accuracy was 89% when
combined with a support vector machine (SVM) and
CNN21. However, both models had several limita-
tions, such as high computation cost and susceptibil-
ity to sample size and complexity. They also did not
attempt to classify three classes. Therefore, future im-
provement is required to enhance the models’ accu-
racy and validity.
This study used XG-Boost for three-class classifica-
tion, primarily focusing on distinguishing CN, EMCI,
and AD. It also evaluated and optimized three fea-
ture selection methods—backward elimination, XG-
Boost importance (XGBI), and principal component
analysis (PCA)—to identify the most suitable method
for the XG-Boost model. When combined with the
Mini Mental State Examination (MMSE) and Clinical
Dementia Rating (CDR) scores, our model achieved
the highest accuracy of 92% for distinguishing AD,
EMCI, and CN. Only three features overlapped be-
tween the BE and XGBI feature selection methods:
MMSE, CDR, and left hippocampus volume. While
these results showed that the model still depends on
the cognitive symptoms of AD rather than its brain
structural changes, our model has great potential as
an assistive tool for AD diagnosis with high perfor-
mance, especially when considering its multi-class
classification.

METHODS
Participants
This study obtained its data from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http
://adni.loni.usc.edu)22. The ADNI was launched in
2003 as a public-private partnership led by Principal
Investigator Michael W. Weiner, MD. Its primary goal
has been to test whether serial MRI, positron emis-
sion tomography, biological markers, and clinical and
neuropsychological assessments can be combined to
measure MCI and EMCI progression22.
The data comprised 663 subjects who were equally
grouped into three classes: CN, EMCI, and AD. Their
demographic information is summarized in Table 1.

Structural MRI data
The structural MRI scans used in this study were the
T1-weighted magnetization prepared-rapid gradient
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Table 1: Demographic information 663 recruited subjects from ADNI

CN EMCI
(n = 221)

AD
(n = 221)

p

Age 75.28 ± 5.76 71.45 ± 7.23* 75.4 ± 7.702 < 0.0001

Sex (M/F) 120/101 118/103 120/101 0.9760

MMSE Score 29.06 ± 1.1 28.12 ± 1.66* 22.8 ± 2.63* < 0.0001

CDR Score 0.03 ± 0.11 0.47 ± 0.16* 0.81 ± 0.32* < 0.0001

Education (Years) 16.18 ± 3.88 16.09 ± 2.65 14.65 ± 4.35* < 0.0001

ApoE4 (+/-) 157/64 82/139 58/163 < 0.0001

Chi-square test was conducted for gender and genotype. ANOVA one-way was conducted for age,
MMSE, CDR, and educational years. * p < 0.0001, compared to CN group
Abbreviations: ns: not significant, compared to CN group (p = 0.1234) (Bonferroni ‘s comparison).
Data is illustrated as mean± standard deviation or number/number. CN: Normal Cognitive; EMCI:
Early Mild Cognitive Impairment;AD: Alzheimer’s disease;MMSE: Mini-Mental State Examination;
CDR: Clinical Dementia Rating; (+) positive; (-) negative where available.

Figure 1: A study framework of AD detection, which includes three main steps. T1-weighted MRI data were
collected from theANDI database (step 1) and preprocessed through FreeSurfer software to obtain brain structure
features. Sequentially they were combined with two cognitive scores and tuned by three selection methods to
construct six approaches for input features (step 2). Finally, generated inputs passed through the XG-Boostmodel
to create the decision tree for AD status (ternary classification), which are CN, EMCI, and AD in step 3. The outcome
also showed the accuracies of the respective input. Abbreviations: CN: Normal Cognitive; EMCI: Early Mild
Cognitive Impairment;AD: Alzheimer’s disease; PCA: Principle Component Analysis; XG-Boost: Extreme Gradient
Boosting.
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Figure 2: The process of FreeSurfer in features extraction. MRI Preprocess: Including image registration, skull
stripping and intensity normalization. Cortical reconstruction and subcortical segmentation: (1) Convert a three-
dimensional anatomical volume into a two-dimensional surface; (2) Segment gray matter and white matter to
create the brain mask file for visualizing after. Region determination and brain parameters analysis: (1) Inflate the
surfaces into a sphere andmap cortical parcel actions back onto individual subjects using two atlases (Killiany and
Destrieux atlas) (2) Establish the boundary between white matter and cortex and compute gray matter thickness.

Table 2: 358 features were extracted by Freesurfer from 663 ADNI subjects, particular dimension for each brain
region

No. Subject ID Brain
Segmentati-on

Volume
Without
Ventricles

Left
Entorhinal

Cortex
(temporal

lobe)

White
Surface

Total Area
in the left

hemisphere

Banks of
Superior
Temporal

Sulcus in the
left hemisphere

... Number of
Defect Holes in

right
hemispherical
Surface Prior to

fixin

1 135_S_4598 1076438.0 285.0 84644.5 996.0 ... 17.0

2 099_S_4480 945976.0 310.0 76032.8 744.0 ... 33.0

3 099_S_2146 1138086.0 453.0 88770.5 1118.0 ... 46.0

... ... ... ... ... ... ... ...

662 082_S_1079 1131880.0 446.0 94008.6 1244.0 ... 73.0

663 130_S_5059 1160101.0 601.0 85947.9 862.0 ... 49.0

* Where area in mm2, volume in mm3

Table 3: The results of feature selection by Approach 3, Approach 4, and Approach 5

Method Backward Elimination
(Approach 3)

XGBoost Importance
(Approach 4)

PCA (Approach 5)

Number of features after
selection

29 228 71

Type of features Brain features and cognitive
scores

Brain features and cognitive
scores

PCA features

Abbreviations: PCA: Principle Component Analysis; XG-Boost: Extreme Gradient Boosting.
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Figure3: Density plots showing thedistribution among three classes (AD, EMCI, CN) of two cognitive scores
and several MRI features. (A) Global CDR Scores, (B) MMSE Scores, (C) Left hemisphere bankssts thickness, (D)
Right hemisphere fusiform volume, (E) eTIV, (F) Left Hippocampus volume. Blue: AD, orange: EMCI, green: CN.
Abbreviations: CN: Normal Cognitive; EMCI: EarlyMild Cognitive Impairment;AD: Alzheimer’s disease; PCA: Prin-
ciple Component Analysis
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Figure 4: Venn diagram showing the total number from overlapping features between two different selec-
tionmethods.

Figure 5: Feature weights after backward elimination and trained by XGBoost. Abbreviations: XG-Boost:
Extreme Gradient Boosting.
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Figure 6: Accuracy of six approaches with 10-fold cross-validation. Approach 1: Brain structure features, Ap-
proach 2: Brain structural features and two cognitive scores, Approach 3: XG-Boost Importance and two cognitive
scores, Approach 4: Backward Elimination and two cognitive scores, Approach 5: PCA features, Approach 6: Back-
ward Elimination and two cognitive scores with tuning parameters. Abbreviations: PCA: Principle Component
Analysis; XG-Boost: Extreme Gradient Boosting.

Table 4: The performance results of six approaches for three-class classification

Approach Class Accuracy Precision Recall F1 score

1 CN 68.8 % 64 % 56 % 60 %

EMCI 64 % 75 % 69 %

AD 79 % 74 % 77 %

2 CN 86 % 80 % 97 % 88 %

EMCI 97 % 71 % 82 %

AD 83 % 98 % 90 %

3 CN 91.05 % 89 % 98 % 93 %

EMCI 95 % 83 % 89 %

AD 91 % 95 % 93 %

4 CN 90.9 % 91 % 98 % 95 %

EMCI 92 % 79 % 85 %

AD 90 % 96 % 93 %

5 CN 74 % 68 % 59 % 63 %

EMCI 75 % 77 % 76 %

AD 78 % 86 % 82 %

6 CN 92 % 88 % 97 % 93 %

EMCI 91 % 85 % 88 %

AD 96 % 94 % 95 %

The data included sMRI from 663 subjects, which were divided into 80 % for training and 20 % for testing.
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Figure 7: Receiver Operating Characteristic (ROC) curves of Approach 1 and Approach 6 for three classes
classification. The green line corresponds to AD, the blue line represents for EMCI, and the red line shows CN.
Abbreviations: CN: Normal Cognitive; EMCI: EarlyMild Cognitive Impairment;AD: Alzheimer’s disease; PCA: Prin-
ciple Component Analysis

echo scans from ADNI 1 and ADNI GO/2. Various
MRI scanner models were used for MRI acquisition;
details of the acquisition protocol for theMRIdata can
be found on the ADNI website (http://adni.loni.usc.e
du)22.

Study design

An overview of the study design is shown in Fig-
ure 1. Firstly, theMRI images were preprocessed with
FreeSurfer to extract 358 features, including volumet-
ric and thickness measurements. Three feature selec-
tion methods were used, and their efficiencies were
compared. This step determined the optimal features
from the 360 elements (FreeSurfer features, MMSE
score, and CDR score). The data were divided into
two sets with a ratio of 80% training to 20% testing
using Python’s Scikit-learn library. Finally, the pro-
posed models were evaluated using the performance
metrics of accuracy, precision, recall, F1-score, and
ROC curves with AUCs to identify the most efficient
classification algorithm.

Feature extraction

Six hundred sixty-three MRI images were recon-
structed and segmented using FreeSurfer (version
5.3; http://surfer.nmr.mgh.harvard.edu). This open-
source software measures and visualizes the hu-
man brain’s functional, connective, and structural
characteristics to extract brain structural features23.
This software’s processing operations have two major
stages (Figure 2).

Feature selection
Feature selection plays a significant role in ML and
pattern recognition. Pearson’s product-moment cor-
relation coefficient (r) was first applied to remove
all linearly related features with a r > 0.9. The rea-
son for using this method is that several features ex-
tracted by Freesurfer are sub-regions or differentmea-
surements of the same brain region. Therefore, in-
cluding highly relevant features in a particular brain-
diagnosed area is redundant from a neuroscience per-
spective. Moreover, highly correlated features may
lead to overfitting, impacting model performance.
Therefore, applying non-linear feature selection can
improvemodel performance and reduce training time
efficiently. The next step was performed with three
feature selection methods to compare their efficiency.

PCA
PCA is a multivariate exploratory analysis approach
that reduces the complexity of multidimensional data
while preserving trends and key patterns24,25. PCA
was applied using Python’s Scikit-learn library with
different numbers of principal components (PCs; 1–
321) to determine the optimal set of features for the
classification model. Then, in each model, the PCs
were incrementally included in 10 PC increments to
observe changes in accuracy with Python’s Matplotlib
library.

BE
BE is a feature selection strategy that excludes charac-
teristics strongly associated with the exposure with-
out significantly influencing dependent variables or
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Figure 8: Visualization results for the ground truths andthe corresponding predictions in three classes (CN,
EMCI, AD). The first and second columns illustrate the correctly-predicted examples, while the last column shows
the wrongly-predicted ones. Abbreviations: CN: Normal Cognitive; EMCI: Early Mild Cognitive Impairment; AD:
Alzheimer’s disease; PCA: Principle Component Analysis

predicted outputs26,27. BE was applied in five main
steps: (i) select a significance level (SL) that is suit-
able for the model (SL = 0.05), (ii) calculate original
least squares with Python’s Statsmodels library before
determining the p-values of all features, (iii) compare
the calculated p-value with the SL, (iv) remove fea-
tures and predictors with a p-value greater than the
SL, and (v) modify it to fit the model with the remain-
ing variables.

XGBI
XG-Boost has the advantage of extracting importance
scores for each feature in the predictive problem, en-
abling the determination of the highest importance
score. The next step removes all unusable features

with zero importance coefficients depending on their
ranking. This action is repeatedly performeduntil sta-
ble accuracy and non-zero importance coefficients are
achieved.

Six features selection approaches
This study investigated six approaches for feature se-
lection. Feature selection was not applied in the
first and second approaches. The first approach used
all 358 features extracted by Freesurfer to train the
model. The second approach added the two cogni-
tive scores to the 358 Freesurfer features. The third
approach used XGBI to filter the Freesurfer features
and included the two cognitive scores when training
the model. The fourth and sixth approaches used BE
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for feature selection and included the two cognitive
scores; however, the sixth approach also applied pa-
rameter tuning. Finally, the fifth approach used PCA
for feature selection.

Classification
XG-Boost is a scalable and efficient gradient-boosting
framework used to combine a series of weak base
learners (small decision trees) into a single power-
ful learner (a big tree)28,29. The enhanced perfor-
mance of XG-Boost has been shown in several ma-
jor areas. Firstly, XG-Boost introduces a regulariza-
tion component into the objective function, making
the model less prone to overfitting. Secondly, it con-
ducts a second-order rather than first-order Taylor ex-
pansion on the objective function, enabling it to spec-
ify the loss function more accurately. Thirdly, XG-
Boost has a fast training speed due to data compres-
sion, multithreading, and GPU acceleration30,31.
The objective function is defined as:

Ob j(t) =
n

∑
i=1

L(yi,
∧
y
(t)
t +

n

∑
i=1

Ω( ft)

where ∧
y
(t)
i represents the prediction for the tth round,

ft represents the structure of a decision tree, and Ω( ft)
represents the regularization component. Ω( ft) is
given by:

Ω( ft) = γT + 1
2 λ

T

∑
i=1

ω2
j

where λ represents the penalty coefficient and
1
2 λ ∑T

j = 1ω2
j represents the L2 norm of leaf scores.

After t iterations, the model’s function is added to a
new decision tree:

∧
y
(t)
i =

∧
y
(t−1)
i + ft(xi)

and the objective function is updated:

Ob j(t) =
n

∑
i=1

L(yi,
∧
y
(t−1)
i + ft(xi))+

n

∑
i=1

Ω( ft)

with the Taylor expansion specification:

Ob j(t) ≃
n

∑
i=1

[
L(yi,

∧
y
(t−1)
i )+gi ft(xi)+

1
2 hi f 2

t (xi)

]
+Ω( ft)

where gi represents the first derivative and hi repre-
sents the second derivative of the loss function. gi and
hi are given by 31:

gi =
ϑ

ϑ∧
y
(t−1)
i

(L(yi,
∧
y
(t−1)
i ))

hi =
ϑ 2

ϑ∧
y
(t−1)
i

(L(yi,
∧
y
(t−1)
i

This study applied the model from the open-source
XG-Boost library. The algorithm also applies the soft-
max parameter and the cross-entropy function. After
fitting the data, the Matplotlib library visualizes the
fitting process and stops the process early to prevent
overfitting.

Tenfold cross-validation32

Grid Search cross-validation (GridSearchCV) is an
object provided by Python’s Scikit-learn library that
generates a set of hyperparameters for tenfold cross-
validation to achieve a maximally accurate model (es-
timator). GridSearch evaluates the grid of indicated
parameters based on the estimator during the call
to fit, including predicting, scoring, or transforming
methods. Then, it returns the best-performing com-
bination of hyperparameters with a maximum score
(the scoring strategy of the basic estimator). Any
other estimator can be applied to this object in this
manner. Lastly, all modifiers and an estimator are as-
sembled by a pipeline, resulting in a combined estima-
tor that can implement several reductions afterward,
such as tuning dimensions before fitting.

RESULTS
Feature extraction
After preprocessing and extraction, 358 features were
exported. Table 2 shows a portion of the extrac-
tion results. From the extraction results, we assessed
the discriminative power of several features and two
additional cognitive scores (CDR and MMSE) using
the point distributions between three classes: AD,
CN, and EMCI (Figure 3). We selected the top four
weighted features according to XGBI and BE: left
hemisphere banks of superior temporal sulcus thick-
ness, right hemisphere fusiform volume, left hemi-
sphere estimated total intracranial volume (eTIV),
and left hippocampus volume. The two scores of the
dementia tests (CDR and MMSE) showed a distinc-
tive distribution in the density plots between the three
classes (Figure 3A, B). In contrast, a significant over-
lap existed between classes in the eTIV distribution
(Figure 3 E). Nevertheless, the AD group separated
relatively well from the CN and EMCI groups in the
distributions of the other three Freesurfer features, es-
pecially the left hippocampus volume (Figure 3 F).
Overall, the density plots in Figure 3showed the great
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potential of CDR and MMSE to enhance model ac-
curacy when combined with the extracted features.
These plots also highlight the challenges in distin-
guishing the CN and EMCI groups.

Feature selection
Several primary factors, such as redundancy (feature-
feature) and relevance (feature-class), must be consid-
ered during feature selection33. For redundancymin-
imization, this study used Pearson’s product-moment
correlation coefficient to measure the association be-
tween features and remove all linearly related fea-
tures34. This phase reduced the features from 360 to
324. Next, PCA, a popular feature selection method,
was used to reduce dimensionality and identify highly
effective and minimally redundant features. PCA cre-
ated 33 feature sets; the first contained one feature, the
second 11 features, and so on until the final set con-
tained 321 features. Then, the performance of these
feature sets was compared to investigate the efficiency
of the PCA method.
Besides PCA, Table 3 and Figure 4 summarize the
results with the other two feature selection methods
(XGBI and BE) tomaximize relevance. TheXG-Boost
library identified several features with unimportant
values during the training process. Consequently, Ap-
proach 4 selected 228 features with non-zero impor-
tance coefficients to ensure that every feature benefits
the trainingmodel. In addition, BE was applied for its
speed and simplicity in removing irrelevant features
with p-values > 0.05. Interestingly, it only identified
29 features, of which 15 were shared with XGBI, in-
cluding the two cognitive scores and 13 brain struc-
ture features (Figure 4).
After selection, XG-Boost continued to train on the
features, resulting in the best performance with Ap-
proach 4 (see the Classification results section). Fig-
ure 5 shows the weights of top-ranked features with
Approach 4. The two cognitive scores were most in-
fluential in the prediction since their weights are ap-
proximately sixfold higher than those of the brain
structure features (0.263 and 0.257, respectively).
Moreover, the thickness of the left superior tempo-
ral sulcus was the most informative brain structure
feature. The temporal lobe was also the most in-
formative brain region because several features ex-
tracted from it had high weights, including the supe-
rior temporal sulcus, fusiform gyrus, transverse tem-
poral gyrus, middle temporal gyrus, the temporal
pole from the right hemisphere, and hippocampus
from the left hemisphere. In conclusion, the tempo-
ral lobe shows themost significant changes in patients
with AD.

Classification
The accuracies of all approaches and the details of
each approach are summarized in Figures 1 and 6.
The accuracies of these three-class classificationmod-
els were assessed by the proportion of correct ex-
pected observations to all actual class observations
with tenfold cross-validation. Approach 1, using 358
brain features, had the lowest accuracy (69.00% ±
3.00%). The accuracy improved with Approach 2,
which added the two cognitive scores to the feature
set (86.00% ± 2.00%). The accuracy improved again
with Approach 3, which used XGBI to select the fea-
tures (91.05% ± 3.34%). However, the accuracy de-
creased with Approaches 4 (90.90% ± 3.35%) and 5
(74.00%). In Approach 5, the accuracies ranged from
63% to 74%, corresponding to 1 to 321 PCA features;
the highest accuracy is shown in Figure 6. Approach
6, using BE for feature selection and tuningmodel pa-
rameters with grid search, achieved 92.00% accuracy.
The performance of the six approaches is summarized
in Table 4. In Approach 1, the AD class had the high-
est precision (79%), recall (74%), and F1 score (77%),
while theCNclass had the lowest precision, recall, and
F1 score. In Approach 6, the AD class also achieved
the highest precision (96%) and F1 score (95%). How-
ever, the CN class had the highest recall (97%) and a
higher F1 score (93%) than the EMCI class (88%).
Figure 7 presents ROC curves showing the classi-
fication performance of Approaches 1 and 6. The
ROC curve for Approach 1 showed that the model
had poor performance in classifying CN and EMCI
subjects (Figure 7A). The AUC of the EMCI class
(0.83) was slightly higher than that of the CN class
(0.82). However, Approach 1 performed well in iden-
tifying the AD class (AUC = 0.92). The ROC curve
for Approach 6 showed that the final model classi-
fied the EMCI class less accurately than the CN and
AD classes (AUC = 0.88; Figure 7 B). Nevertheless,
the ROC curves of all three classes were significantly
improved with Approach 6 compared to Approach 1.
The ROC curves for the CN (AUC= 0.94) and AD
(AUC = 0.98) classes demonstrated excellent perfor-
mance. The ground truths and their corresponding
predictions in three classes are illustrated in Figure 8.

DISCUSSION
This study’s primary aim was to implement the XG-
Boost algorithm in early AD detection at the EMCI
stage. The model performance significantly improved
from 68.8% to 92.0% after adding two cognitive scores
(MMSE and CDR) and selecting features (Figure 6
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and Table 4). The final model achieved the highest
accuracy of 92% by combining Pearson’s correlations
with BE for feature selection, reducing the number of
features from 360 to 29 (Figure 4 andTable 3 ). In ad-
dition, BE was explicitly recognized as the most suit-
able selection method (Figure 6 and Table 4). The
ROC curve illustrated excellent performance for Ap-
proach 6 (Figure 8 B), with the AD class having the
highest AUC (0.98), followed by the CN class (0.94)
and the EMCI class (0.88).

Feature weights
The BE method in Approach 4 showed that the hip-
pocampus and temporal lobe features were the most
important. This result is expected since structural
changes in these regions are considered early indi-
cators of MCI and AD35. During the earliest stages
of AD, brain atrophy typically follows the hippocam-
pal pathway (entorhinal cortex, hippocampus, and
posterior cingulate cortex) and is associated with
early memory deficits36. Furthermore, the variations
in structural measures, including hippocampus and
temporal lobe volumes, sulcus width and thickness,
and subcortical nuclei volume, correlate with cogni-
tive performance37–40.
Our study found that the two cognitive scores (MMSE
and CDR) had substantially higher weights than the
brain features. We conclude that the ML architec-
ture designed in this study remains insufficiently ef-
fective. Clinically, these two scores are used as parts
of the preferred standard diagnosis procedure for AD.
Moreover, MMSE and CDR mainly depend on gen-
eral cognitive and behavioral states rather than the
underlying biological changes in the nervous sys-
tem41,42. Consequently, while the final model still
shows considerable performance, it remains too de-
pendent on symptom testing rather than brain struc-
ture changes.

Roles of cognitive scores and feature selec-
tion
Performance differed significantly between the first
approach excluding the cognitive scores and the other
approaches including them. Specifically, after adding
MMSE and CDR to the feature set, the accuracy in-
creased drastically by nearly 20%, from 69% ± 3%
to 86% ± 2%. We suggest that future model devel-
opment should minimize the influences of the two
scores in the prediction to make applying the model
in the clinical setting less dependent on the availabil-
ity of well-trained neurologists to conduct such cog-
nitive tests. There has been a recent increase in the

number of studies completing this task. For exam-
ple, Liu et al. reported a multi-model DL framework
with accuracies of 88.9% for classifying AD and CN
and 76.2% for classifying MCI and CN43. Farooq et
al. compared GoogLeNet, ResNet-18, and ResNet-
152, reporting accuracies of 98% for all three mod-
els44. However, most recent studies only used a DL
approach, which could hinder technology acceptance
by medical doctors45.
Our study also illustrated that feature selection, espe-
cially BE and XGBI, plays a crucial role in the classi-
fication model. Both methods led to significant in-
creases in model performance, which surpassed the
results of other approaches. The reason is that, from
a biological perspective, not all brain features con-
tribute to AD pathology 46–48. Several studies suggest
that several brain regions are affected by AD-related
atrophy, including the frontal, temporal, and pari-
etal lobes or cerebellum brain regions46–48. Other
feature selection methods also showed outstanding
accuracy. For example, Fang et al. proposed sev-
eralML algorithms combinedwith goal-directed con-
ceptual aggregation to demonstrate the effectiveness
of this method compared to other approaches (PCA,
least absolute shrinkage and selection operator, and
univariate feature selection). They achieved 79.25 %
accuracy in classifying CN vs. EMCI and 83.33%
in classifying CN vs. LMCI49. Khagi et al. com-
bined SVM and K-nearest neighbors with one of four
feature selection methods (ReliefF, Laplacian, UDFS,
and Mutinffs), reporting accuracies of approximately
99% for AD classification50.

Model selection and comparison
While the models in Approaches 3, 4, and 6 per-
formed relatively similarly, Approach 6 was chosen
to be the final model. Firstly, this approach achieved
the highest accuracy (92%). Secondly, this model
had a shorter training time (45.5 seconds) than Ap-
proach 3 (242.6 seconds). Moreover, in the feature
selection step, Approach 6 selected features automati-
cally, while Approach 4 required manual feature se-
lection. In addition, by running GridSearch, Ap-
proach 6 could obtain optimal parameters compared
to Approach 4 (without GridSearch).
Approaches 1 and 6 had greater difficulty classify-
ing EMCI than the other classes. The AUC for the
CN class was the lowest in Approach 1 (0.82) but in-
creased significantly in Approach 6 (0.94). This in-
crease indicates that feature selection may eliminate
misleading features, which remained significant for
CN classification51. However, the AUC of the EMCI
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class increased slightly from 0.83 to 0.88; therefore,
EMCI is the most challenging class for the model to
identify. Brain structural changes in patients with
EMCI are likely not prominent enough for the model
to recognize easily. Moreover, the EMCI classification
remains challenging, and this class often showed low
accuracy in previous studies. For example, Goryawala
et al. only achieved an accuracy of 0.616 for distin-
guishing CN and EMCI and 0.814 for distinguishing
EMCI and AD52.
Overall, three-way classification in the AD diagno-
sis model still performs poorly. The proposed model
is compared to current models inTable 5. How-
ever, most current models using three-way classifi-
cation focus on the MCI class, while the EMCI class
is more important in facilitating early AD diagno-
sis. This oversight underscores the distinctiveness
of this study, which introduces novelty by address-
ing three-class classification involving EMCI, AD,
and CN categories. Therefore, the proposed method
shows substantial promise in its performance com-
pared to other methods. Compared with state-of-the-
art models for three-way classification, the method
proposed in this study achieves promising perfor-
mance with 92% accuracy. However, Ahmed et al.
developed a multi-class deep CNN framework for
early AD diagnosis, achieving 93.86% accuracy for
three-way AD/MCI/CN classification53. It is impor-
tant to note that their focus was on MCI, whereas our
study focuses on the more challenging EMCI classi-
fication. Consequently, our model offers a more so-
phisticated approach and, therefore, has a competitive
advantage.

CONCLUSIONS
This study developed anMLmodel for early AD diag-
nosis based on structural MRI scans using XG-Boost
to classify three classes: CN, EMCI, and AD. We also
evaluated three feature selection methods (BE, XGBI,
and PCA) to identify the optimal method for our
model. The finalmodel using BEwith tuning parame-
ters achieved the highest accuracy of 92%. The AUCs
for theAD, CN, and EMCI classes were 0.98, 0.94, and
0.88, respectively. Compared to previous three-class
classification methods, the proposed method appears
promising for early AD detection.
While the XG-Boost model attained high accuracy
with the aid of BE, several technical issues remain un-
solved. Firstly, the AUC was lower for the EMCI class
than for the CN andAD classes. Therefore, additional
interventions in fitting parameters to enhance the per-
formance of EMCI accuracy are essential. In addition,

the model should be modified to reduce its depen-
dence on MMSE and CDR scores. Finally, the model
should be tested on multi-datasets to optimize its per-
formance.
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Table 5: Model performance of three-way classification in early diagnosis of Alzheimer

Study Sample size Method Model performance

54 224 CN, 133 MCI, 85
AD

Modified Tresnet 63.2 %

55 200 CN, 441 MCI, 105
AD

Decision tree with linear discriminant analy-
sis

66.7 %

56 197 CN, 330 MCI, 279
AD

3DCNNwith 8 instance normalization layers 66.9 %

57 CN vs. MCI vs. AD XG-Boost 66.8 %

58 229 CN, 398 MCI, 192
AD

VGG-16 (Visual Geometry Group 16) 80.66 %

59 115 CN, 133 MCI, 58
AD

ResNet-18 with Weighted Loss and Transfer
Learning and Mish Activation

88.3 %

60 229 CN, 382 MCI, 187
AD

Combined Graph convolutional networks
and CNN

89.4 %

Proposed
method

221 CN, 221 MCI, 221
AD

XG-Boost and BE 92 %
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