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ABSTRACT
COVID-19 is a global pandemic caused by severe acute respiratory syndrome (SARS) coronavirus-
2 (SARS-CoV-2). The three main receptors used by SARS-CoV-2 to bind and gain entry into hu-
man cells are ACE, TMPRSS2, and CD147. These molecular factors have crucial roles in human
metabolism and homeostasis, but the upregulation of these factors causes severe diseases such
as myocarditis, prostate cancer, and other endocrine-related cancers. Studies have found that
once humans come into contact with SARS-CoV-2, the chances of being affected by such disor-
ders increase; indeed, infection with the virus is associated with increased morbidity and mortality
from heart attacks and pulmonary inflammation. Notably, exposure to some pesticides, such as
chlorpyrifos, cypermethrin, and imidacloprid, which are identified as potential endocrine disrup-
tors, causes such disorders by interfering with hormonal signaling pathways, such as the insulin-
glucagon pathway and the thyroid pathway. This review focuses on the potential role of pesticides
in exacerbating the comorbidities linked with SARS-CoV-2 and their effect on the molecular fac-
tors associated with SARS-CoV-2. Understanding the potential therapeutic implications of this link
between SARS-CoV-2 severity and pesticides requires further clinical trials and investigations.
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INTRODUCTION
The year 2019 witnessed one of the major catastro-
phes of the world. Spreading globally, the novel
coronavirus has become one of the greatest threats
to humankind. This coronavirus belongs to the se-
vere acute respiratory syndrome coronavirus (SARS-
CoV) family 1. First identified following an out-
break in 20042 in Yunnan, China, SARS is responsi-
ble for multiple respiratory diseases such as the com-
mon cold, bronchitis, and pneumonia caused by se-
vere acute respiratory syndrome coronavirus (SARS-
CoV), which also caused the viral pandemic outbreak
in 2019 (COVID-19)3. Owing to the high nucleotide
substitution and recombination capacity of coron-
aviruses, SARS-CoV-2 is still mutating and evolving
rapidly 2,4. The severe outbreak of the novel strain
SARS-CoV-2 in December 2019 in Wuhan Province
of China caused a global breakdown in the economy
while still posing a threat to human health, leading
to unpredictable disastrous consequences5. SARS-
CoVs are generally enveloped viruses with a single-
stranded RNA genome6. The International Commit-
tee for Taxonomy of Viruses has classified the human
coronavirus under the Coronaviridae family, which is
genotypically and serologically further divided into
four major genera: alpha-CoV, beta-CoV, gamma-

CoV, and delta-CoV2. Before the emergence of hu-
man coronavirus, there was evidence for the presence
and harboring of coronavirus in various animals, such
as bovine coronavirus (BCoV) and feline infectious
peritonitis virus (FIPV)7. Over time, the parallel de-
velopment of poultry farming and urbanization, and
the frequent close contact of animals with one an-
other and their exposure to humans contributed to the
evolution and transmission of coronavirus in other
species, such as bats8,9. Direct contact of humans
with these coronavirus-harboring bats in 2019 has
been suggested as a possible mode of transmission of
the virus in humans10. Since then, SARS-CoV, which
causes COVID-19, has affected many countries glob-
ally 11. SARS-CoV-2 relies on ACE2, TMPRSS2, and
CD147 to gain entry into human cells (Figure 1)12.
ACE2, TMPRSS2, and CD147 receptors are present
on the cells of various organs13 and, by attaching it-
self to these receptors through various mechanisms,
SARS-CoV-2 is able to enter various organs of the hu-
man body 14.
SARS-CoV-2 is composed of a phosphorylated nucle-
ocapsid (N) protein containing genomic RNA5. This
core unit is packed by a phospholipid bilayer enve-
lope to form particles varying in shape and size rang-
ing between 80-120 nm15. The characteristic feature
of this assembly is characterized by sharp projections
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Figure 1: A representation of mechanism of SARS-CoV-2 interacting with host factors ACE2, TMPRSS2 and
CD147 leading to organ dysfunction. Abbreviations: ACE2: Angiotensin-Converting Enyzme 2; TMPRSS2:
Transmembrane Serine Protease 2; CD147: Cluster of Differentiation 147

known as spike or spike proteins (S) present on the
outer surface16. Regarding its protein composition,
SARS-CoV-2 is composed of four structural proteins:
spike (S), envelope (E), membrane (M), and nucleo-
capsid (N) proteins1. Only three viral proteins, S, E,
and M, are embedded in the viral envelope, while the
N protein is located in the core of the virus bound to
the viral genomic RNA17. The S protein is a glycopro-
tein assembled as a trimeric unit and mediates recep-
tor binding andmembrane fusion, allowing the pene-
tration and entry of the virus into host cells18. The ge-
netic composition of SARS-CoV-2 is nonsegmented
plus-sense single-stranded 26-31 kb RNA with var-
ied G+C content (32%–43%)19. The genome compo-
sition is: 5′-leader-UTR-replicase/transcriptase-spike
(S)-envelope (E)-membrane (M)-nucleocapsid (N)-
3′UTR-poly (A) tail20. The 5′UTR and 3′UTR are in-
volved in RNA-RNA interactions during the binding
of viruses with other cellular proteins21.
The virus assembly consists of 4 structural proteins:
nucleocapsid (N), envelope (E), spike (S), and mem-
brane (M) protein1. After the synthesis of the SARS-
CoV-2 structural proteins and genomic RNA at the
replication site, an unknown mechanism translocates
these entities at the ER-Golgi intermediate compart-
ment (ERGIC) for the assembly of the virus and bud-
ding22, during which the structural proteins become
embedded in the outer structure, while the N protein

packs itself along with the genomic RNA, making up
the virion23. TheE andMproteins of the virus assem-
bly help in budding, whereas the S protein is involved
in the initial host-virus interaction24. The first step
in the interaction is attachment of the virus to the cell
membrane of the host, which is regulated by the S gly-
coprotein25. The S protein organizes itself in an iden-
tical trimeric manner23. Multiple copies of this struc-
ture are embedded in the viral envelope membrane,
and this glycoprotein moiety is recognized by host
cell receptors26. During biosynthesis and maturation
in the infected cell, the recognition phase occurs, at
which point this trimeric unit is usually cleaved from
the viral structure by the protease furin from theGolgi
apparatus27, leaving only two subunits behind, i.e., S1
and S2. The S1 subunit is recognized by angiotensin-
converting enzyme (ACE2) and binds to it1. After
budding, the virus moves to the ERGIC lumen and
reaches the plasma membrane, traveling through se-
cretory pathways where the S2 subunit fuses with the
membrane mediated by a fusion peptide (FP)28.

INVOLVEMENT OF SARS-COV-2-
ASSOCIATEDMOLECULAR FACTORS

ACE2

Angiotensin-converting enzyme 2 (ACE2) is an en-
zyme found in various locations in the human
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body 29. It is mostly found attached to the cell mem-
branes of the heart, intestines, gall bladder, testes, and
kidney 30,31. It exists in two forms: membrane-bound
(mACE2) and soluble (sACE2)32, which make up the
renin-angiotensin-aldosterone system (RAAS) that
maintains the body’s blood pressure33. mACE2 acts
on the enzymeADAM17, cleaving its extracellular do-
main to create sACE2, which catalyzes the hydrolysis
of angiotensin II into angiotensin34. Angiotensin II is
a vasoconstrictor peptide angiotensin (1-7)35 and in-
duces vasodilation after binding withMasR receptors,
hence lowering blood pressure and antagonizing the
effects of ACE236. This phenomenon is a potential
target for drugs that are used in cardiovascular disease
treatment37. ACE2 (membrane-bound) is also func-
tionally known as the receptor for the spike glycopro-
tein of the human coronavirus SARS-CoV-238. Rec-
ognizing this interaction of ACE2 with SARS-CoV-2
has accelerated some novel therapeutic approaches to
reduce ACE2 expression or block the enzyme to pre-
vent the cellular entry of SARS-CoV-2 in the kidney,
heart, lung, and brain, where ACE2 is expressed39.

TMPRSS2

Transmembrane serine protease 2 (TMPRSS2) is a cell
surface protein located in endothelial cells lining the
heart, liver, respiratory, and digestive tracts40. As a
serine protease, it is functionally involved in the cleav-
age of peptide bonds of proteins that have serine as
the nucleophilic amino acid within the active site41.
It is encoded by the TMPRSS2 gene and is a member
of the TMPRSS family of transmembrane proteins ex-
hibiting serine protease activity 42. The protease ac-
tivity of this protein is used by SARS-CoV-2 to enter
cells43. Mutations of the TMPRSS2 gene can lead to
prostate cancer. The overexpression of TMPRSS2 and
prostate carcinogenesis involves the interplay of the
transcription factors ERG and ETV144,45. Their en-
hanced expression stimulates the downregulation of
androgen receptor signaling46. The protease activity
of TMPRSS2 is exploited by SARS-CoV-2 to gain en-
try into the heart, liver, and respiratory cells40. The
S1 and S2 subunits of the virus are cleaved by the pro-
teolytic activity of TMPRSS229.

CD147

In addition to ACE2 and TMPRSS2, another recep-
tor, CD147, is also responsible for SARS-CoV-2 en-
try into the epithelial cell lining12. CD147 is a
transmembrane receptor that forms a transmembrane
supramolecular complex and interacts with several

extracellular and intracellular factors47. CD147 sup-
pressesNOD2 and the gamma-secretase protein com-
plex48. NOD2 is part of the innate immune sys-
tem, and gamma-secretase is responsible for the cleav-
age of beta-amyloid precursor from the plasmamem-
brane17. Owing to its diverse interactions, CD147 has
crucial roles in cell metabolism, motility, and activa-
tion49. The initiation of programmed cell death, lym-
phopenia, and cellular overactivation is suggested to
occur as a result of the CD147-SARS-CoV-2 interac-
tion50. Cyclophilins A and B are the two main ex-
tracellular ligands of CD147 that are recognized by
the nucleocapsid protein and then bind with the spike
protein of SARS-CoV-249. The presence of three Asn
glycosylation sites in this receptor is also suggested
to bind with the glycosylated spike protein of SARS-
CoV-251,52.

EFFECT OF PESTICIDE EXPOSURE
ON ACE2, TMPRSS2 AND CD147
Endocrine disruptors (EDs) are chemicals that disturb
normal human body metabolism by interfering with
hormones in the endocrine system53. These chemi-
cals are known to cause developmental, neurological,
reproductive, and immunological disorders54 and are
present in plasticware, detergents, cosmetics, and pes-
ticides55. This review focuses on pesticides as en-
docrine disruptors. Human exposure to such chem-
icals can cause cardiometabolic diseases, hyperten-
sion, diabetes, and other endocrine-related cancers56.
With the expansion of SARS-CoV-2 worldwide, the
risk of severe diseases such as asthma, cancer, cardio-
vascular disease, hypertension, diabetes57, and obe-
sity also increased, suggesting a possible connection
of these chemicals with SARS-CoV-2.
Although these relationships have not yet been ex-
plored to any great extent, several studies hint at
the possible involvement of ED chemicals in SARS-
CoV-2 susceptibility. Pesticides such as chlorpyri-
fos, deltamethrin, cypermethrin, and imidacloprid
have been identified as possible endocrine disrup-
tors58. Using computational approaches, some of the
pathways have been identified as potential targets of
endocrine disruptors that contribute to COVID-19
severity 59. These signaling pathways include TNF60,
insulin resistance, endocrine resistance,MAPK61, IL-
17, and prolactin pathways62. Ivermectin is an in-
secticide that has been identified to show mosquito-
cidal effects. A study by Lehrer et al. showed the
interaction of ivermectin binding with the SARS-
CoV-2 spike-RBD-ACE2 complex63. A study of cot-
ton aphids exposed to omethoate, an insecticide, was
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Figure 2: The relation between pesticides inducedmetabolic disorders associated with SARS-CoV-2 sever-
ity and the involvement of some receptors (ACE2, TMPRSS2, CD147). Abbreviations: ACE2: Angiotensin-
Converting Enyzme 2; TMPRSS2: Transmembrane Serine Protease 2; CD147: Cluster of Differentiation 147

found to downregulate ACE2 mRNA64. The in-
secticide methamidophos has been shown to affect
ACE2 levels in Oomyzus sokolowskii65, while some
organophosphates have been found to affect ACE2 via
RNA interference (RNAi)66.
Pesticides are a broad range of chemicals widely used
in domestic settings and agriculture67. Exposure
to pesticides such as organochlorines, pyrethroids,
organophosphates, and carbamates results in distur-
bances in the normal hormonal functioning of the hu-
man body 68. Therefore, these chemicals are also clas-
sified as endocrine disruptors67. Exposure to these
chemicals with human mitochondrial metabolic fac-
tors such as ACE2, TMRPSS2, and CD147 also opens
the door for SARS-CoV-2 involvement69(Figure 2).
The novel beta-SARS-CoV-2 caused the global health
crisis COVID-192. When the virus comes into con-
tact with its living host, it targets ACE2, TMPRSS2,
and CD14770. Environmental pollutants can have a
wide range of effects on human metabolism. It has
been reported that particulate matter from smoking
or factories can increase SARS-CoV-2 severity 71, but
it is unclear whether these pesticides canmake organs
more susceptible to SARS-CoV-272. Studies have re-
vealed that activation of the IL-8/CXCR1/2 pathway
in lung fibroblasts is triggered by pesticides and air
pollutants62, resulting in upregulation of ACE2 and
TMPRSS2 levels, thereby increasing the risk of SARS-
CoV-2 infection. The upregulation was prevented by
blocking the IL-8/CXCR1/2 pathway 73. Clinical tri-
als are required to determine whether pesticides are

linked with SARS-CoV-2 severity and, if yes, it is im-
portant to directly or indirectly uncover the underly-
ing mechanisms and pathways74. Given the impor-
tance of TMPRSS2 in SARS-CoV-2 infection, a num-
ber of studies have considered potential therapeu-
tic approaches that might target this receptor. Cer-
tain selective bioactive compounds, from organisms
such as P. grandiflorus , show promise as an alter-
native treatment option against SARS-CoV-2 infec-
tions by targeting TMPRSS275. Similarly, designing
peptide-mimicking compounds that can inhibit TM-
PRSS2 activity is another possible approach76. α-
Terthienyl, a new-generation insecticide, downregu-
lates TMPRSS2 by reducing its mRNA and protein
expression77 but increases the expression of p27, a
tumor suppressor gene78. Some anti-CD147 drugs,
such as meplazumab, inhibit SARS-CoV-2 in patients
with COVID-19 pneumonia79. Another approach is
the truncation of the cytoplasmic tail of CD147 to
prevent the entry of SARS-CoV-280. As discussed,
some environmental toxicants (pesticides) are known
tomodulate ACE2, TMPRSS2, andCD147 expression
thus, further preclinical studies and clinical trials are
required to assess inhibitory compounds against these
toxicants81.

CONCLUSION
The receptors ACE2, TMPRSS2 and CD147 are
the main entry for the SARS-CoV-2 in humans.
These molecular factors play a crucial role in hu-
man metabolism and homeostatis but their overex-
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pression and upregulation leads to various pathophys-
iological conditions. The endocrine disrupting pes-
ticides such as chlorpyripos, cypermethrin, imida-
cloprid modulate the expression of ACE2, TMPRSS2
and CD147. The COVID-19 is associated with se-
vere inflammatory conditions leading to cardiovascu-
lar and pulmonary pathologies. Hence, the exposure
of these endocrine disrupting pesticides will increase
the comorbidities associated with SARS-CoV-2 infec-
tion by interfering with the hormonal signaling path-
ways. Hence, the present review article explores the
link between pesticide exposure and endocrine recep-
tors associated with SARS-CoV-2 infection.

ABBREVIATIONS
ACE2: angiotensin onverting enzyme 2; CD147:
cluster of differentiation 147; COVID-19: coro-
navirus disease-2019; ED: endocrine disrupt-
ing/disruptors; SARS-CoV-2: severe acute res-
piratory syndrome coronavirus 2; TMPRSS2:
transmembrane serine protease 2
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