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ABSTRACT
Microbes release importantmetabolites that regulate variousphysiological activities inside andout-
side of organisms. The human gastrointestinal tract is a reservoir of microbes that play important
regulatory roles in modulating the immune system and numerous other physiological functions.
Thus, there is substantial interest in these microbial products and their clinical significance. These
microbial metabolites have shown promise as therapies for cancer, inflammation, neurological dis-
orders, and many other diseases. Here, we discuss microbial metabolites with substantial thera-
peutic potential, including proteasome inhibitors, therapeutic enzymes, bacteriocins, polyamines,
and flavonoids.
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INTRODUCTION
Therapies involving metabolites produced and re-
leased by microbes have received substantial at-
tention from the scientific and medicinal commu-
nity in recent decades. Microbial metabolites are
microorganism-produced compounds with potential
therapeutic applications. Microbial metabolites are
being assessed as novel therapeutic tools for various
diseases, including cancer and immune disorders1.
The first therapeutic use of microbes to treat infec-
tion occurred during World War II after Alexander
Fleming isolated penicillin in 19282. Currently, re-
searchers are using different biological and chemi-
cal methods to study the biological effects of mi-
crobial metabolites on humans3. There is a grow-
ing demand for using substances generated from mi-
croorganisms in medicine, agriculture, the food in-
dustry, and scientific research4. Developing anti-
cancer drugs with reduced side effects from the mi-
crobiome has been a research priority for many years.
Researchers have discovered that natural products can
help treat cancer, illness, infection, allergy, and many
other diseases5, demonstrating that microorganisms
are viable sources of therapeutics. Microbes associ-
ated with the human body impact pathophysiolog-
ical processes, including metabolic disorders, men-
tal disorders, and even cancer6. Actinomycetes pro-
duce 0.1% of known microbial secondary metabo-

lites, Bacillus produce 7.0% and other bacteria pro-
duce 1–2%7. Other diseases, such as tuberculosis
(TB), have long been treated using natural remedies
derived frommicrobial secondarymetabolites8. Cur-
rently, four drugs, isoniazid, rifampin, pyrazinamide,
and streptomycin, are used to treat TB. The World
Health Organization (WHO) plan for TB helps pa-
tients limit its spread worldwide. Microbial natural
products benefit patients, avoiding injections and act-
ing as alternatives to synthetic drugs and other regular
therapies9. Microbial amino acids have been utilized
in nutritional supplements and food for humans and
animals. It is promising and economically advanta-
geous to produce essential amino acids on an indus-
trial scale using microbial metabolites10. Piericidins
are a large class of microbial metabolites commonly
formed by species of the genus Streptomyces and com-
prise a 4-pyridinol core skeleton with a methylated
polyketide side chain11. Piericidin application has
been developed over time. Streptomyces broth culture
was screened in 1993 to assess the antitumor effects of
piericidin as a novel phosphatidylinositol turnover in-
hibitor. Piericidins have been isolated from soil, wa-
ter, and insect samples12. Here we summarize the
main types of microbial metabolites that exhibit dif-
ferent therapeutic properties and can be potentially
of clinical and therapeutic use. These metabolites are
either secreted by microbes outside of the body or as-
sociated with the microbiome.
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BIOMIMICRY OFMICROBIAL
METABOLITES
The word biomimicry is derived from the Greek
bios, meaning life, and mimesis, meaning imita-
tion. Biomimicry approaches are frequently used
in drug discovery. The novel approach of micro-
bial metabolite imitation can increase the chemical
repertoire of future pharmaceuticals. In medicine,
biomimicry involves the development of homologs
of host-endogenous molecules that target specific re-
ceptors and provide a desirable result13. The future
development of pharmaceuticals will likely be broad-
ened by the use of microbial metabolites that imitate
promiscuous ligand–receptor interactions. Xenobi-
otic nuclear receptors, such as PXR and AhR, are pro-
totypical host receptors with weak ligand interactions.
Microbial metabolite mimicry using PXR and AhR
as model xenobiotic receptors has been found to re-
sult in powerful and non-toxic treatments, mediat-
ing pathophysiological disorders involving these re-
ceptors. It is also plausible that these weaker receptor-
ligand interactions have evolved to the host’s ben-
efit to avoid receptor overstimulation, which may
have certain negative effects. Additionally, not all
microbial metabolites are advantageous; some pro-
mote inflammation and cancer development13. Mi-
crobial metabolite mimics with distinct antibacte-
rial effect can be tested against intestinal bacteria
in vitro or in consortia-inoculated germ-free ani-
mals to explore diversity control as a method for
host disease control. Thus, mimicry enables the di-
versification of the microbiome and the upkeep of
host health homeostasis by increasing the metabolite
repertoire14. Kaempferol, a natural flavanol, has anti-
arthritis properties, among other pharmacological ef-
fects. Intraperitoneal (20 mg kg−1 d−1) and intra-
gastric (200 mg kg−1 d−1) kaempferol delivery has
been assessed for efficacy and mechanistic action in
collagen-induced arthritis (CIA) mice. Kaempferol
retained in the gastrointestinal tract diversified the
microbiota. These findings support the idea that
microbiome diversity contributes to the therapeu-
tic effect. Kaempferol mimics with strong micro-
bial remodeling capabilities can be used for arthri-
tis therapy 15. Intestinal microorganisms may pro-
duce indole/indole-3-propionic acid, which, when ac-
tivated by PXR, downregulates the TLR4-NF-B in-
flammatory pathway in mice; an indole/indole-3-
propionic acid small-moleculemimic of PXR enhance
receptor activation. Unlike other PXR xenobiotics,
the small-molecules FKK5 and FKK6 mimic the nat-
ural indole metabolites, avoiding toxic effects16.

THE PATH TOWARDUSING
MICROBIALMETABOLITES AS
POTENTIAL THERAPEUTICS
Humans have used numerous conventional drugs for-
mulated fromherbs, fungi, and synthetic chemistry as
pharmaceuticals for centuries16. These products have
effectively cured ailments such as cancer17. How-
ever, due to the limitations of past pharmaceuticals
in curing and treating novel medical problems, drug
and pharmaceutical development has grown expo-
nentially in the past five decades, replacing older
drugs to eliminate severe side effects and improve effi-
cacy. Scientists and researchers have becomemore in-
terested in microbes and their products, and the pos-
itive findings in clinical studies evaluating microbial
products have led companies and agencies to opt for
these strategies in novel drug development18. Many
strategies, such as metal-based compounds from mi-
crobes, enzymes, and proteasomes, have been tar-
geted for their clinical and therapeutic significance
(Table 1).

Microbial proteasome inhibitors
Proteosomes are the regulatory machinery that reg-
ulates the homeostatic conditions of the body by re-
moving and degrading regulatory proteins. Many
of these proteins play a substantial role in devel-
oping immunity against pathogens19,20. A proteo-
some of the TB-causing bacteria Mycobacterium tu-
berculosis was targeted by two small drugs, namely,
MMV019838 andMMV687146. These drugs showed
promise for curing TB and achieved better outcomes
in in silico tests21. Proteosomes are Ntn-hydrolases
(N-terminal nucleophiles) that require ATP to cleave
amide bonds22,23. Regulatory proteins such as CDK
inhibitors, cyclins, and tumor suppressors are ex-
tremely vulnerable to this machinery if demonstrat-
ing abnormalities in structure or function. Proteo-
some Inhibitors (PIs) target proteosomes and affect
their functionality 19. Biophysical parameters, such as
the local concentration of proteins and their binding
affinities, are critical for the PI efficacy 24. PIs enhance
immune responses and control the growth of cancer-
ous cells by preventing proteosomes from removing
regulatory proteins19. PI development was initiated
approximately fifteen years ago25; due to their im-
munosuppressive effects, PIs have demonstrated sub-
stantial potential in the development of drugs for in-
flammation, carcinoma, immune disorders, andmus-
cular dystrophies25,26. PIs have demonstrated partic-
ular efficacy for hematological malignancies, multiple
myeloma, and multiple cell lymphoma27.
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The ubiquinone–proteosome system (UPS) is a ma-
jor protein turnover regulator inmammalian cells and
can be effectively targeted by PIs to cure malignan-
cies (Figure 1)28. Fellutamides are UPS inhibitors
produced by Penicillium spp. and Aspergillus spp. in
the gastrointestinal (GI) tract of Apogon endekatae-
nia, amarine fish. Fellutamides are potently cytotoxic
against in vitro a wide range of cancer cells, including
sarcoma cells, fibroblasts, solid tumor cells, and hu-
man epidermoid carcinoma KB cells29. The mecha-
nisms by whichUPS functions within protein systems
are shown in Figure 1.
Lactacystin, synthesized by Streptomyces actinobac-
terium30, was the first-in-class PI discovered and in-
corporated into clinical research as a therapeutic31.
Lactacystin effectively treats many diseases in animal
models and is being evaluated in clinical trials. A rat
model study used lactacystin to target UPS to address
synaptic plasticity in Alzheimer’s disease (AD), suc-
cessfully restoring synaptic tagging and capture (STC)
and impairing activity-dependent synaptic plasticity
in vitro and associative long-term memory in vivo.
Thus, lactacystin is a potential therapy for AD32.
Belactosin (β -Lactone), mainly extracted from Strep-
tococcus spp., is a PI with antitumor properties and
potential bioactivity against viruses and bacteria. Ma-
rizomib, a naturally occurring β -Lactone extracted
from the Salinispora tropica, has shown clinical and
preclinical improvements in multiple myeloma33,34.

Microbial therapeutic enzymes
Enzymes have long been used in industry and were
initially explored in the context of medical therapy in
the 1950s, altering our perception of medicinal drugs
and therapeutics. Due to their anti-inflammatory and
anticancer effects, enzymes have been developed for
several ailments, including cancer, AD, and hyper-
uricemia44.
Inflammation is an immune response mostly charac-
terized by swelling at the site of homeostatic distur-
bance due to environmental agents such as pathogens,
chemicals, or abrasions45. Conventional drugs, such
as non-steroidal anti-inflammatory drugs (NSAIDs),
have been used to overcome inflammation; however,
such drugs are associated with several side effects,
such as GI ulcers. Trends have shifted toward the
use of microbial enzymes to overcome these prob-
lems, for example, serratiopeptidase, which has high
efficacy in inflammation and almost no harmful ef-
fects46. In a study on bowel disease in mice, the
gut microbiota schistosome-derived enzyme P28GST
(28 kDa glutathione S-transferase) showed promising

anti-inflammatory results in the colon, restoring the
regulatory responses betweenT-helper 1 andT-helper
2 cells47.
Serratiopeptidase is produced by the gram-negative
bacterium Serratia marcescens. Serratiopeptidase is
a protease in the trypsin family and demonstrates
highly anti-inflammatory proteolytic activity 48,49.
Serratiopeptidase restoreswound sites through an un-
usual mode of action, recruiting immune cells from
the lymph nodes to the affected area to promote heal-
ing50. The efficacy of serratiopeptidase increases ex-
ponentially when used in combination with other
drugs, such as NSAIDs48.
Another protease enzyme, collagenase, hydrolyzes
collagen fibers50. Collagenase was used in enzymatic
wound debridement prior to the discovery of its anti-
inflammatory properties. Das et al. assessed the anti-
inflammatory application of collagenase in mice in
2018. Wound-healing macrophages loaded with col-
lagenase santyl ointment (CSO) were implanted into
themice, and anti-inflammatory cytokine production
was increased in the CSO-treated groups, improv-
ing inflammatory wound healing51. Similarly, the
suppression of pro-inflammatory cytokines was ob-
servedwhen simvastatin-loaded porousmicrospheres
were injected into the tendons of the collagenase-
induced Achilles tendinitis rats. The production of
anti-inflammatory cytokines also increased52. Nu-
merous other studies on the collagenase produced
by Clostridium histolyticum have revealed that it is
healthy, noninvasive, and safe in treating several
pathological conditions53.
Superoxide dismutase is another clinically significant
anti-inflammatory agent that can be derived from
Cyanobacteria, such as Anabaena cylindrica, Plec-
tonema borynarum,Nostoc commune, andMicrocystis
aerunginosa50.
L-asparaginase is a microbe-derived enzyme that
can play an important role in the cure of can-
cer. Numerous molecules influence the prolifera-
tion of cancer cells and downregulate their growth50.
L-asparaginase can be derived from Escherichia
coli, Leucosporidium muscorum, Aspergillus terreus,
Yersinia pseudotuberculosis, and Pseudomonas oti-
tidis54,55. L-asparaginase generates ammonia and as-
partic acid by breaking down L-asparagine, which is
the driver of its anti-cancerous ability. L-asparaginase
is effective in treating lymphoblastic leukemia55.
Bacteriocins are the chemicals bacteria produce to
eliminate competitors from ecological niches56 and
are generally used in intra-specific interactions, for
example, in competition for food and shelter57. Some
bacteriocidins demonstrate anticancer activity with
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Table 1: The clinical significance of various microbial metabolites against molecular targets suggests their
promising role in clinical translation of novel drugs

Sr. Metabolite Microbial
Specie

Molecular
targets

Clinical Significance References

1 Prodigiosin Serratia
marcescens

Herpes 
simplex virus

(PG) is a natural red pigment secondary metabolite.
That exhibit cellular targets altering apoptosis and
proapoptotic anticancer effects

35

2 Serrawettin Serratia
marcescens

Methicillin-
resistant

aureus
(MRSA)

Serrawettin, whichwas isolated from the green potato
rhizosphere, has potent antifungal properties. Ac-
cording to reports, serratia produce antibacterial
chemicals and secondary metabolites such as the red
pigment prodigiosin.

36

3 Ethyl
acetate
extract

Pseudoalteromonas
rubra, Vir-
gibacillus
salaries

Nocardiopsis
dassonvillei

The ethyl acetate was used to extract the active com-
pounds that were tested for bacterial growth in-
hibitory activity against human clinical pathogens.
The EA extract was prepared as described and anal-
ysed for its content of triptolide and tripdiolide, which
are responsible for up to 90%of the bioactiviA extract.

37

4 Aminoglycosides
(S-137-R)

Bacillus
velezensis

Plasmid-
mediated
quinolone
resistance

Aminoglycosides (S-137-R) used for the treatment of
severe Gram-negative bacterial infections. Strepto-
coccal and enterococcal endocarditis can be treated
with some treatments for severe Pseudomonas aerug-
inosa infections, brucellosis, and in low dosages as a
synergistic approach.

38

5 Methanolic
pigment
extract

Micrococcus
sp.

Canthaxanthin
(4′,4′-
diketo-13-
carotene)

It is still being done to screen bioactive substances to
uncover new chemical structures for the methanolic
pigment extract utilized in pharmaceuticals. Some
substances have been developed as antibiotics, and
they are essential for the survival and growth of mi-
croorganisms in bacterial populations or the ability to
withstand nutritional stressors.

39

6 Germicidins,
c-
Actinorhodin

Streptomyces
lanatus

Pyricularia
oryzae

Some Streptomyces strains produce germicidins,
which serve as autoregulators of spore germination.

40

7 Juglomycin
A

Streptomyces
achromo-
genes E91CS4

Streptozotocin Juglomycins have bactericidal action against both
Gram-positive and Gram-negative bacteria, as well as
anticancer activity. There have been a few reports of
racemic juglomycin syntheses

41

8 Acyl dep-
sipeptide
(ADEP)

Streptomyces
hawaiiensis

ClpP serine
protease

The caseinolytic protease (ClpP protease), the prote-
olytic centre of bacterial ATP-dependent proteases,
was discovered to be the target of acyldepsipeptides
(ADEPs), a new class of antibacterial chemical and
its derivative. Treatment with ADEP lengthened Lep-
tospira and slowed its growth kinetics.

42

9 Lipopeptide
lipid 430

Algibacter sp.
M09B557 and
M09B04

Chloropid,
Bacteroidetes

Human TLR2 transfected human embryonic kidney
cells were triggered by Lipopeptide lipid 430, which
also caused wild-type mice’s blood CCL2 (MCP-1)
levels to rise.

43
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Figure 1: Overview of inhibitors of UPS. An overview of the action mechanism of the UPS. UPS is the protein
degradation mechanism consisting of three important components i.e., ubiquitinating enzymes (E1, E2, & E3), a
26S Proteosome, and deubiquitinating enzymes (DUBs). These components can be specifically targeted by differ-
ent inhibitors as shown in the figure. These inhibitors are in their respective phases of trials and some have been
shown to be efficacious in different conditions such as inflammations, cancers, and anti-microbial activities.

selective toxicity toward cancer cells58. Many bacte-
riocin molecules, such as Nisin A derived from Lac-
tococcus lactis, are effective in head and neck squa-
mous cell carcinoma (HNSCC) through inducing cell
cycle arrest and blocking cell division59. Bacteriocins
have also been found effective against breast cancer60.
Bivocin H5C derived from Streptococcus bovis, Lat-
erosporulin 10 derived fromBrevibacillus sp, andCol-
icins A and E1 extracted from Escherichia coli also
have antitumor properties61.
Arginine deiminase is an enzyme produced and se-
creted by Mycoplasma spp., such as M. hominis, M.
arginine, and Pseudomonas furukawaii61. Arginine
has shown encouraging antitumor and anticancer
properties and canplay a key role in the cure and treat-
ment of numerous auxotrophic carcinomas through
arginine depletion62. The absence of arginosuccinate
synthetase 1 (ASS1) in most cancers is the key as-
pect of the functionality of ADI (arginine deiminase).
ASSI is critical for L-arginine production; cancer cells
take up L-arginine for growth. This dependence of
the cells on external sources can be pivotal in the anti-
cancerous activity of arginine deiminases63.
Microbial antibiotic resistance is rising; thus, there
the development of novel therapies is urgent64,65.
Antibacterial drugs and therapeutics are a promi-
nent focus for handling this increasing challenge and

controlling human and animal pathogens57. Sev-
eral strategies and therapeutics have been developed,
such as bacteriocins and lysin enzymes, referred to as
enzybiotics. Enzybiotics are microbial enzymes and
products that hinder the growth of pathogenic bac-
teria. Since their discovery in 2001, enzybiotics have
played a significant role in the development of micro-
bial based antibacterial drugs to combat antibiotic re-
sistance44.
Bacteriocins are the secondary metabolites bacteria
produce to target competitors, hindering the growth
and reproduction of other microbes66. Bacteriocins
are antimicrobial peptides (AMPs) 12–100 amino
acids in length67. AMPs have recently been found
effective against human microbial pathogens derived
from lactic acid bacteria (LAB), Lactobacillus68. Bac-
teriocins have shown great efficacy towards sev-
eral microbe-borne diseases, including methicillin-
resistant Streptococcus aureus (MRSA)69. LABs
have been successfully employed in managing MRSA
in clinical trials70. Another bacterial-produced
TFnt, lysostaphin, is a bacteriocin that has demon-
strated encouraging bactericidal activity against mu-
tant Staphylococcus aureus strains71.
Endolysins are hydrolases that prevent the forma-
tion of the cell wall, cell membrane, envelope, and
biofilm around antibiotic resistant strains of bacteria
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by lysing the peptidoglycan layer44,72. Different en-
dolysin enzymes have different mechanisms and tar-
get sites in Gram-positive and Gram-negative bacte-
ria44. Many endolysins have shown efficacy in clin-
ical trials. LysK-like endolysin derived from Staphy-
lococcus spp. and LysSAP33 encoded by bacterio-
phage SAP33 have substantial lytic activity against
the antibiotic-resistant Staphylococcus aureus, tar-
geting biofilm formation73. Similarly, many en-
dolysins, namely, Abtn-4, derived from a bacte-
riophage D2 (vB_AbaP_D2), have shown substan-
tial therapeutic potential, preventing biofilm forma-
tion by multiple phage-resistant Gram-positive and
Gram-negative bacteria (Staphylococcus aureus, Pseu-
domonas aeruginosa, Klebsiella pneumonia, Entero-
coccus, and Salmonella). The aforementioned find-
ings highlight the therapeutic potential of this en-
dolysin74. Another important endolysin, LysAB54,
was extracted from the phage p54 of the multi-
drug resistant Acinetobacter baumannii and showed
promising antibacterial activity this and other gram-
negative bacteria, such as Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Escherichia coli75.

Other metabolites
Numerous other gutmicrobiome-derivedmetabolites
also have immense therapeutic potential76. These
metabolites play a substantial role in living organ-
isms’ biological machinery, influencing physiologi-
cal, pathological, and metabolic activities and sig-
naling pathways77. Gut microbial metabolites, such
as short-chain fatty acids (SCFA) and many other
organic compounds, have shown encouraging anti-
cancer, brain modulation, anti-obesity, anti-bacterial,
neurological, and mineral absorption properties78.
These metabolites are very effective, especially for
neurological diseases, including ASD, PD, AD, and
neuroinflammation79,80. Some other metabolites,
such as TMA and TMAO, are also effective for cardio-
vascular diseases, including heart failure (72), hyper-
tension81, and atherosclerosis82. Understanding the
mechanisms of action of these metabolites will open
doors for new therapeutic approaches81. Other such
metabolites include TMAO, tryptophan, indoles, 4-
ethylphenylesulfate, fatty acids, and protein-derived
metabolites.

Protein-derivedMetabolites
Protein-derived metabolites are functional, cova-
lent protein modifications produced during or af-
ter protein digestion through endogenous, intrin-
sically reactive metabolites without the aid of en-
zymes83. Many protein-derived metabolites have

been shown to be therapeutic. Taurine is a sulfur-
containing β -amino acid and can be generated from
cystine metabolism84,85. Taurine has many impor-
tant functions in animals’ nervous system, muscles,
kidneys, cardiovascular system, and immune system
because of its anti-inflammatory and anti-oxidative
effects85,86. Taurine plays a vital role in maintaining
homeostasis and many other physiological activities,
such as gene expression and energy metabolism87,88.
Traumatic brain injury (TBI) is lethal, and inflamma-
tory responses can result in death in other traumatic
conditions. Taurine was administered to 32 patients
with TBI conditions alongwith Standard EnteraMeal.
The levels of the inflammation biomarkers IL-6, IL-10,
and TNF-α were recorded before and after the treat-
ment, and serum IL-6 levels decreased significantly,
showing the encouraging anti-inflammatory proper-
ties of taurine and its potential clinical use89. Tauro-
lidine (TRD) is a taurine N-methylol derivative that
exerts bactericidal and anti-inflammatory effects by
inhibiting proinflammatory cytokines, such as IL-6,
IL-8, and IL-1β 90.
Imidazole propionate is another protein-derived mi-
crobial metabolite produced in the gut microbiome
through histidine metabolism and is closely linked
with glucose metabolism91,92. Imidazole propi-
onate disrupts glucose metabolism and causes sev-
eral diseases, including type 2 diabetes and hyperten-
sion93,94. T2Dhas been found to be closely associated
with elevated imidazole propionate, which alters his-
tidine metabolism and impairs glucose metabolism
and insulin signaling by activating Mtor1, p38γ , and
S6K1 signaling92. Imidazole propionate is a poten-
tial activator of p38γ map kinase, inhibiting met-
formin activity 95, and is associated with increased
pro-inflammatory cytokines that cause gastrointesti-
nal inflammation and inflammatory bowel disease93.
Microbiota-associated polyamines are organic cations
produced by the gut microbiota organisms, such as
Clostridia96. These polyamines are derived from
arginine-containing proteins97 and are involved in
numerous metabolic and cellular activities, includ-
ing cell growth and differentiation and the produc-
tion of DNA, RNA, and several proteins96. Many
polyamines are also uremic toxins that hasten the pro-
gression of renal fibrosis and uremia98. However,
polyamines such as spermine can suppress inflamma-
tory cytokine production and regulate NF-κB acti-
vation96. Spermine is also associated with prostate
cancer (PCa); significantly decreased levels of sper-
mine have been observed in PCa patients. Sper-
mine levels are a marker of PCa, and understanding
the mechanism of action of spermine may lead to its
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use as a therapeutic target99. Another polyamine,
putrescine, is naturally produced in peri-ovulating
women and decreased in women with age-related in-
fertility, demonstrating the role of putrescine in ova
production and its potential for improving ova quality
as a treatment for infertile women of advancedmater-
nal age100.

Flavonoids
Flavonoids are plant-based nutritional constituents
with substantial health benefits101. Certain
flavonoids may have hepatoprotective characteristics
that reduce the risk of coronary heart disease102.
Moreover, these flavonoids have anti-inflammatory
and anticancer properties103. Flavonoids demon-
strate structural and functional effects through
enzyme inhibition, acting as antioxidants, damaging
cells, triggering host defense mechanisms, and block-
ing virus cell attachment and penetration103,104. As
secondary plant metabolites, flavonoids constitute
the majority of the non-energetic aspect of human
nutrition. Most dietary flavonoids are O-glycosides
and are primarily consumed as D-glucose; fermented
foodstuffs such as wine, tempeh, and certain teas
also contain flavonoids. The polarity of the flavonoid
molecule increases with glycosylation, which is
necessary for preservation in plant cell vacuoles105.
Similarly, many GI tract microbial metabolites may
be responsible for or contribute to quercetin’s effect
when taken orally since the flavonoid metabolites
DHPA and 4-methylcatechol reduce arterial blood
pressure106. The absorption, distribution, digestion,
and elimination of flavonoids by the GI tract are
critical processes affecting human health107. These
features are influenced by how flavonoids interact
with other dietary components, the host, the en-
vironment, and GI flora108. Flavonoids can target
the microbiome, various GI tract cell types, and
compounds present in luminal material107–109.

Bile acids
Bile acids are microbiological byproducts with poten-
tial therapeutic applications. The gut microbiota pro-
duces bile acids, which are crucial for dietary lipid sol-
ubilization110. The gut microbiota facilitates diges-
tion and has been linked to diseases and health risks.
Despite the considerable variation in gut microbiota
composition, it is challenging to link intestinal mi-
crobiota patterns to health and nutrition because the
gut microbiota has a high level of functional redun-
dancy. Metabolomics has successfully identified gut-
produced microbial metabolites that may be signifi-

cant mediators of diet-induced host–microbial inter-
action in several studies. Among the metabolites de-
rived from nutrition are short-chain fatty acids, sec-
ondary bile acids inferred from primary bile acids,
microbial tryptophan catabolites that originate from
proteolysis, imidazole propionate originating from
histidine, and trimethylamine N-oxide111,112. Bile
acids can potentially be used to treat non-alcoholic
fatty liver disease (NAFLD), cholestatic andmetabolic
liver diseases, infant jaundice, and other liver prob-
lems113–116. NAFLD is the most frequent chronic
liver disease worldwide115. The link between the gut
microbiota & NAFLD has been widely researched.
The gut microbiota controls NAFLD by fermenting
undigested foodstuff, interacting with intestinal mu-
cosal immune system, and altering intestinal barrier
function, leading to signaling changes117. Micro-
bial metabolites, including SCFAs, TMAO, BAs, en-
dogenous ethanol, and indole, play important roles
in NAFLD regulation. However, changes in micro-
bial metabolites in NAFLD are undeniable. Microbial
metabolites impact the signaling pathway in the stom-
ach and the liver, which is distant from the gut117,118.
Microbes, in part, control the host’s immune system
by generating metabolites. An increasing body of re-
search suggests that some microbial metabolites af-
fect the immune system significantly through host re-
ceptors and other target molecules. P2X7, GPR41,
GPR43, GPR109A, aryl hydrocarbon receptor pre-
cursor (AhR), farnesoid X receptor (FXR), PXR, and
TGR5 are some of the metabolite-specific receptors
expressed by immune cells119–121. Changes in food,
bodily functions, and the immune system produce
a range of signals from microbial metabolites and
their receptors. Gut bacteria produce many lipid-
modifying and metabolizing enzymes. For instance,
polyunsaturated fatty acids are transformed into hy-
droxy fatty acids by gut bacteria such as Lactobacillus
plantarum, which also encodes the enzymes that sat-
urate polyunsaturated fatty acids122.

Polyamines
Polyamines are polycationic compounds with over
two amino groups that are biosynthesized from or-
nithine and arginine. Polyamines, primarily pu-
trescine, spermidine, and spermine, are abundant in
the digestive system and are derived from food or
biosynthesized by the host and bacteria. Polyamines
are chiefly produced within the host by arginase 1
(which converts l-arginine to l-ornithine), ornithine
decarboxylase (ODC), which metabolizes ornithine
to putrescine, and enzymes that catalysis spermidine,
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putrescine, and spermine interconversion. In con-
trary to host polyamine metabolism, bacteria cre-
ate polyamines using constitutive or inducible amino
acid decarboxylases. Polyamines play an important
role in cell proliferation, immune system activation,
and cell differentiation. Polyamines are crucial dur-
ing the cell development; a low content of polyamines
inside the cell has been associated with cell growth
abnormalities. Increased amounts of polyamines
are needed by tumor cells relative to normal cells
to sustain fast development; increased polyamine
concentrations are observed in blood/urine samples
from cancer patients relative to those in samples
from healthy and normal individuals. Dysregula-
tion of polyamine metabolism in the host or gut
bacteria potentially contributes to colorectal cancer
(CRC)123. Polyamines in the gut includes cadav-
erine, putrescine, and spermidine, although bacte-
ria can produce other polyamines. Polyamine path-
way enzymes have been found in various organ-
isms. However, only a few species have been func-
tionally characterized in terms of polyamine produc-
tion. Polyamines are produced, accumulated, or re-
quired/used by Staphylococcus aureus, Haemophilus
influenzae, E. coli, Enterococcus faecalis, Neisseria
flava, and Vibrio cholera. Cadaverine is a lysine de-
carboxylation product produced by the bacterium en-
zymes LdcC and CadA. Cadaverine can be produced
by humans and microorganisms. Cadaverine biosyn-
thetic enzymes are also found in Streptococcus and Es-
cherichia coli. Polyamine metabolism is dysregulated
in pancreatic adenocarcinoma. The fact that modifi-
cation of the polyamine cycle can amplify or alleviate
the effects of traditional cytostatic therapy emphasizes
the functional importance of polyamine production
in (human) pancreatic cancer124.

Tri-methylamine N-Oxide
Trimethylamine N-Oxide is an osmolyte and a
metabolite produced in the gut microbiome and
is generated from dietary choline, betaine, and L-
carnitine125,126 crucial for stabilizing protein struc-
tures in the presence of urea126. Several studies have
shown that high circulating blood levels of TMAO
are associated with the development of many chronic
diseases, including cardiovascular diseases (CVD),
atherosclerosis127, obesity (potentially)128, diabetes,
colorectal cancer129, acute kidney disease (AKD)
(Figure 2)130, and neurological disorders involving
synaptic plasticity 131,132. Since TMAO plays a sig-
nificant role in heart failure (HF) pathogenesis, one
of several cardiovascular diseases (CVDs) caused by

vascular inflammation, it can serve as an early and
timely prognostic biomarker before HF becomes crit-
ical81,133,134. This inflammatory response associated
with TMAO is also seen in conditions such as pso-
riatic arthritis (PsA). In a study conducted on 38
PsA patients, TMAO and other chemicals, such as
Trimethylamine (TMA), choline, and carnitine, were
found to be involved in inflammation. Thus target-
ing TMAO is a potential treatment for PsA135. In an-
other in vitro study of vascular smooth muscle cells
(VSMC) from rats and humans, TMAO was found to
play a substantial role in the development of inflam-
matory responses; the Nox4-PRMT5-VCAM-1 path-
waywas revealed as a potential target for resolving this
condition136. Recently, a study of 48 patients with
preeclampsia (PE) revealed, by analyzing fecal matter
plasma lipopolysaccharide (LPS) andTrimethylamine
N-Oxide (TMAO) and in comparison with healthy
controls, that elevated LPS and TMAO are present in
PE patients137.

Fatty Acids
Short-chain fatty acids are the fermentation prod-
ucts of some gut-microbiome bacteria produced
from non-digestible carbohydrates (NDCs)138. The
most common SCFA-producing bacteria species
are Anaerostipes caccae, Bacteroides eggerthii, and
Clostridial spp.139. Therapeutically, SCFAs are im-
portant because have substantial anti-obesity, anti-
inflammatory, and anti-diabetic potential140. Nu-
merous SCFAs, such as valproic acid, acetate, bu-
tyrate, and propionate, hold immense therapeutic po-
tential. Valproic acid (VPA) is an anti-convulsant and
anti-epileptic SCFA with applications in many neu-
rological disorders, including autism, epilepsy, mi-
graine, and bipolar disorder141,142. VPA also has an-
ticancer activities143. VPA (3 µM) in combination
with arsenic trioxide (ATO) (3 µM) showed synergis-
tic anticancer effects in NCI-H460 and NCI-H1299
lung cancer cells in vivo and in vitro141. VPA has also
shown antioxidant, anti-inflammatory, and antilipi-
demic properties in a female mouse model with type
1 diabetes. Wistar Rats with type 2 diabetes have also
been treated with VPA (100, 300, and 600mg/kg body
weight) and metformin (100 mg/kg body weight), re-
vealing anti-diabetic and pro-antioxidant effects144.
Butyrate, another very important SCFA metabolite,
is synthesized by gut microbiota and recognized as a
very critical mediator in the regulation of whole-body
energy metabolism145, particularly functioning as an
important nutrient source for colonocytes, influenc-
ing their differentiation and growth146. Decreased
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Figure 2: Role of TMAO. TMAO derived from the microbiome has a major role in controlling and regulating ma-
jor blood and cardiovascular conditions. Increased levels of TMAO have negative effects including inflammation,
increased risks of thrombosis, anddisturbedglucosemetabolismwhich leads toworsenedhealth conditions; obe-
sity, atherosclerosis CRC and CKD.

butyrate levels have been observed in patients with ul-
cerative colitis (UC), leading to inflammation in the
intestinal mucosa. Later it was discovered that bu-
tyrate downregulates the expression of genes involved
in the inflammatory pathways147 .
Long chain fatty acids (LCFA) are also therapeuti-
cally important. Omega-3 fatty acid (O3FA) is an
important long-chain fatty acid not synthesized by
the body. It is of great therapeutic interest due
to its anti-inflammatory 148, antineoplastic149, an-
tithrombotic, insulin resistance, antiarrhythmic150,
neuroprotective151, and immunomodulatory 152 ef-
fects. Eicosatetraenoic acid (EPA) is one of the two
main types of O3FA. It has the potential to control
the signs and symptoms of depression. Previously,
the brain was thought to contain very little or no
EPA; however, EPA was recently found to penetrate
the blood-brain barrier, where it is immediately es-
terified into phospholipids; thus, EPA does not build
up in the brain and is instead found in at low levels
in microglia. Randomized clinical trials are required
to demonstrate the therapeutic potential of EPA in
combatting major depression153. Recent studies have
also demonstrated that EPA is essential for normal
brain function. In controlled trials conducted on
92 children (aged 6–12) with attention deficit hyper-
activity disorder (ADHD), in comparison with the
placebo, high doses of EPA (1.2 g) improved overall

focused attention and vigilance. Thus, EPA treatment
may improve cognitive symptoms in ADHD-affected
youth154. EPA has also shown anti-inflammatory ef-
fects155.
Conjugated linoleic acid (CLA) is another naturally
occurring LCFA with substantial therapeutic poten-
tial due to its anti-carcinogenic, anti-atherosclerosis,
and anti-obesogenic properties156. The therapeutic
potential of CLA in cancer has been demonstrated in
several animal and cellularmodels studies; clinical tri-
als of CLA for breast cancer and prostate cancer have
also been performed157.

4-Ethylephenylesulfate (4-EPS)
4-Ethylephenylesulfate (4-EPS) is a gut-microbiome-
derived metabolite considered a uremic toxin158,159.
Elevated levels of 4-EPS have been observed during
the atypical neurodevelopment of neuronal tissues in
mice. Similarly, 4-EPS entered the brain in another
mouse study and induced unusual brain activity and
behaviors. In ex vivo culture, this disturbance of
brain activity and behavior patterns was due to the de-
creased interaction between neuronal cells and oligo-
dendrocytes due to impaired maturation. This im-
paired activity in mice could be cured by the pharma-
cological differentiation of oligodendrocytes, demon-
strating the toxic effects of 4-EPS on behavior. These
gut–brain interactions due tometabolites can be a po-

5646



Biomedical Research and Therapy 2023, 10(4): 5638-5653

tential target in treating complex behavior diseases in-
cluding, autism spectrum disorder (ASD)76,159. Sim-
ilarly, higher levels of 4-EPS have been reported in
the maternal immune activation (MIA) ASD mouse
model, and this increased level of 4-EPS was con-
trolled by the administration of Bacteroides fragilis.
Axial Biotherapeutics also observed similar elevated
concentrations in children with ASD160.

CONCLUSION
Numerous studies demonstrate the broad potential of
microbialmetabolites in the treatment ofmultiple dis-
eases, especially those for which conventional thera-
pies have failed; thus, thesemetabolites may represent
the future of the drug and pharmaceutical industries.
The broader efficacy ofmicrobial metabolite therapies
remains debatable, andmore studies and clinical trials
are required. However, previous small-scale studies
indicate these therapies are potentially highly effec-
tive. Further investigation into microbial metabolites
will allow their use to become more common beyond
clinical trials. The resulting treatments will likely be
comfortably incorporated into approaches for various
diseases.
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