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ABSTRACT
Early detection of relapse following successful curative-intent breast cancer surgery is an essen-
tial strategy for survival. Unfortunately, conventional screening via radiological imaging and tis-
sue biopsies may be confounded by tumor size. Moreover, tissue biopsy is comparably invasive,
clinically challenging, and predisposes medical and mental health complications. The use of liq-
uid biopsies for postoperative screening in breast cancer survivors has been explored as a safer
and easier alternative. The increasing popularity of the minimally invasive approach is due to its
simplicity in accessing and obtaining the analyte and its lower associated costs. Using circulating
tumor DNA (ctDNA) as a novel marker, the method enables real-time monitoring of disease-free
survival and detection of potential cancer recurrence through cancer-specific alterations in ctDNA
release from cancer cells and its short half-life. The promising clinical applications of ctDNA have fu-
eled interest in developing new biomarkers with superior sensitivity for earlier detection of cancer
recurrence, leading to the improved efficacy and efficiency of treatments andmanagement. How-
ever, establishing this less invasive screening tool remains a challenge. In this review, we discuss
the state-of-the-art in ctDNA-based liquid biopsies with a focus on the recent progress, challenges,
and future directions of this technique for clinical applications in the follow-up care of breast cancer
survivors.
Key words: Circulating tumor DNA, liquid biopsy, breast cancer management

INTRODUCTION
Breast cancer is one of the leading causes of death
among women1–3. In 2020, the total number of
new cases of breast cancer worldwide was estimated
at 2.3 million1. For survivors who undergo pri-
mary curative-intent surgical resection, the goals of
management are to achieve cancer-free survival and
to prevent recurrence. Unfortunately, approximately
30% of these survivors develop recurrence after a pri-
mary surgical intervention, with about one-third of
them subsequently succumbing to death4. Therefore,
measures to confirm remission and to detect relapse
at the earliest stage are the core strategies to improve
prognosis.
Unfortunately, management goals are restricted by the
limitations of conventional screening and diagnos-
tic procedures. Tissue biopsy is the diagnostic gold
standard and is used for all phases of diagnosis, stag-
ing, and prognosis. However, histological examina-
tion can be difficult to obtain due to challenges in re-
trieving the tumor tissue. Tissue biopsy is restricted
by the invasive technique needed to access small tu-
mor masses, which may lead to the acquisition of an

inadequate sample from which to derive a conclu-
sion. More importantly, when the tumor size is large
enough to be detected to warrant a tissue biopsy, the
recurrence has most likely metastasized to other parts
of the body 5,6. Therefore, tissue biopsy is a compara-
bly poor measure for the early detection of potential
recurrence, impeding the timely evaluation of treat-
ment options and the disease prognosis.
Unlike radiological screening, laboratory investiga-
tion remains crucial for diagnosis because breast can-
cer is highly heterogeneous, with diverse morpho-
logical features, molecular factors, and responses to
therapy 7,8. At presentation, patients may be strat-
ified to a specific treatment protocol based on em-
pirical risk and the molecular subtype of cancer9–11.
For example, anthracycline- (e.g., doxorubicin) and
taxane-based agents (e.g., paclitaxel) are administered
to patients with triple-negative breast cancer (TNBC)
due to the lack of targetable receptors12–15. Although
these patients exhibit a positive response to ther-
apy compared with non-TNBC patients, more than
one-half of TNBC patients have cancer recurrence.
These studies highlight that certain patients are not
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responsive to therapies, and many of them experi-
ence treatment-related adverse events. Furthermore,
a growing body of evidence has demonstrated an as-
sociation between therapy resistance and the develop-
ment of recurrence16–19. Therefore, parameters from
laboratory investigations are fundamental for facili-
tating the precise planning, intervention, and subse-
quent follow-up regimens of postsurgical breast can-
cer patients.
Liquid biopsy has recently emerged as a promising
new measure. Compared with conventional tissue
biopsy, the practicality, cost efficiency, and the pos-
sibility to analyze a wide range of laboratory parame-
ters have fueled interest in this new method. In this
review, we will provide an overview of the clinical
potential of liquid biopsy based on circulating tumor
DNA (ctDNA) as a diagnostic and surveillance tool
and highlight the challenges associated with ctDNA-
based biomarkers, with an emphasis on perspectives
from other solid tumors due to a lack of evidence in
breast cancer.

THE CONCEPT OF LIQUID BIOPSY IN
CANCER
Liquid biopsy offers a comprehensive view of the ge-
nomics of primary and metastatic tumors20–23. This
technique allows for the identification and screening
of specific mutations in tumors using minimally in-
vasive methods in real time. This is possible because
circulating genetic materials derived from tumors can
be found in biofluids, such as blood, urine, saliva,
cerebrospinal fluid, pleural effusion, pericardial effu-
sion, and ascites effusion24–26. Because it is possible
for sampling to be performed without sedation in a
routine clinic setting, liquid biopsy can be obtained
during follow-up visits at any cancer stage or in the
asymptomatic population5,27. These properties allow
for more regular, accessible, cost-efficient, and timely
screening and surveillance that is comparable regard-
ing quality of care for various members of the breast
cancer survivor population.
Therefore, researchers may gain access to circulat-
ing genetic materials via liquid biopsy. The most
common circulating genetic materials are exosomes,
tumor-educated platelets, circulating tumor cells, mi-
croRNA, and cell-free DNA (cfDNA). In cancer, liq-
uid biopsies are grouped based on the origin of tumor-
derived materials, which include ctDNA, circulating
tumor cells, tumor-derived exosomes, and other ex-
tracellular vehicles (EVs)6,28. Early, practical, and
regular access to these tumor-derived materials are
the key advantages of liquid biopsy over other meth-
ods.

CTDNA

Biology of ctDNA

ctDNA may carry discriminatory information for
screening and surveilling the presence of active cancer
cells. ctDNA is a small fragment of cfDNA. It consists
of fragments of double-stranded nuclear and mito-
chondrial DNA (mtDNA) approximately 40–200 base
pairs (bp) in size24,29. It has a peak at roughly 166
bp that corresponds to nucleosome-associated DNA
fragments. A substantial number of studies have re-
ported that ctDNA is shorter than cfDNA derived
from noncancerous cells29,30. Of interest, shorter
fragments (<100 bp) might be enriched with ctDNA
and mtDNA and may preferentially carry tumor-
derived genomic alterations. The half-life of ctDNA
is reported to be less than 2 hours; it is shorter than
the half-life of any protein marker in the plasma,
which can be several weeks31,32. The short half-life
of ctDNA makes it viable for the real-time monitor-
ing of tumor burden in cancer patients. These distin-
guishing features of ctDNA enable researchers to in-
fer the presence or absence of tumor residuals to de-
duce complete remission post-curative-intent multi-
modality treatments or to detect an early phase of re-
currence.
Further pursuing this interest, numerous studies have
investigated the primary mechanism of DNA release
from a tumor; apoptosis, necrosis, pyroptosis, and
senescence, among othermechanisms, have been sug-
gested based on various research findings33–37. Short
fragments of ctDNA are believed to be released into
the blood or lymphatic circulation during apoptosis
or phagocytosis by macrophages. This provides a clue
as to why liquid biopsy can provide genetic informa-
tion about the tumor. In addition, ctDNA can be re-
leased into the circulation by living tumor cells, either
from primary or metastatic tumors, through EVs that
play a role in the transportation of ctDNA between
distant tissues. The size of EVs has a significant im-
pact on the enrichment of ctDNA in tumor cells, as
reported in prostate cancer patients24. More efforts
are currently being invested to elucidate the compo-
nents of ctDNA transported in EVs that are actively
released by tumor cells and the effects of different
treatments on this ctDNA.Therefore, research on the
primary mechanism of DNA release from tumor cells
may help to explain certain ctDNA parameters from
liquid biopsies to facilitate evidence-informed clinical
decision making.
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Clinical applications of liquid biopsy-based
ctDNA
Different ctDNA parameters from liquid biopsies
may communicate the molecular events that underlie
breast cancer pathogenesis. With optimal uses and in-
terpretations of biomarkers, clinicians may formulate
targeted interventions, monitor treatment response,
and sensitively detect any residual active pathologies
to address potential recurrence and metastasis. Un-
fortunately, in the case of tissue biopsy, the need to
retrieve adequate tissue samples represents a major
obstacle to achieving this goal. For example, it has
beendocumented that epidermal growth factor recep-
tor (EGFR) genetic testing is not conducted in approx-
imately 19% of advanced non-small cell lung cancer
(NSCLC) cases for the abovementioned reason28. In
contrast, as ctDNA carries tumor-specific genetic and
epigenetic alterations38–40; the abundance and easy
access to samples in liquid biopsy make it a remark-
able and practical alternative for the diagnosis and
monitoring of cancer.

ctDNA as a prognostic marker
ctDNA that bears cancer-specific genetic and epige-
netic aberrations has also been investigated as a fea-
sible parameter for evaluating prognosis. Elevation
of ctDNA in the circulation has been shown to pos-
itively correlate with a higher chance of survival. Pa-
tients who underwent resection for colorectal cancer
shed high concentrations of preoperative ctDNA that
correlated with cancer recurrence and poor survival
outcomes29. In line with this finding, a prospective
multicenter study involving 177 patients reported that
elevated levels of ctDNA (defined as ≥5 ctDNA cells
per 7.5 mL of blood) were associated with poor prog-
nosis among patients with metastatic breast cancer41.
These findings were further corroborated by a study
by Parkinson and Gale42.

ctDNA as a biomarker for tumor burden
Tumor burden is another crucial aspect of breast can-
cer management. However, regular radiological as-
sessment is limited by the risk of radiation expo-
sure, and it is reliant on tumor size, which must
be large enough to be detected by imaging modali-
ties. In comparison, ctDNA can be used to evalu-
ate tumor burden without these drawbacks. An ad-
vanced disease is postulated to shed a larger amount
of ctDNA than a disease in its early stage or a pre-
malignant lesion43,44. In a retrospective study con-
ducted by Parkinson and Gale42, ctDNA levels in se-
rially collected liquid biopsy samples from 40 high-
grade serous ovarian carcinomas were significantly

correlated with lesion volume at the start of treat-
ment. Likewise, Xu and Wei45 reported a signifi-
cantly higher combined diagnostic score of ctDNA
methylation markers in patients with residual tu-
mors compared with patients with no detectable tu-
mors. Of note, the diagnostic score varied between
the early stages (I & II) and advanced stages (III &
IV) of hepatocellular carcinoma. Therefore, the use
of ctDNA to monitor tumor burden may be extended
as a biomarker for cancer progression.

ctDNA as a heterogeneitymarker
Cancer heterogeneity refers to variations in the char-
acteristics and behavior of a tumor based on different
types of cancer cells. Cancer heterogeneity presents
a significant challenge to cancer diagnosis, survival
prediction, treatment selection, and resistance46–48.
Selective pressure toward a subpopulation within tu-
mor cells may lead to acquired resistancemechanisms
and subsequent recurrence47. The authors demon-
strated that ctDNA may reveal mutations that were
not seen in an archived biopsy as a result of either
heterogeneity or de novo mutations47. Sequencing
of ctDNA that bears specific genomic alterations can
provide precise information about cancer heterogene-
ity to guide clinicians and oncologists in develop-
ing targeted interventions and optimal management
plans.

ctDNA as a biomarker for therapeutic re-
sponse
Response to treatment is the main focus of curative-
intent breast cancer therapy. Easy access to liquid
biopsy throughout the treatment period allows real-
time monitoring of therapeutic response and disease
progression. Chabon and Simmons49 demonstrated
the utility of ctDNA in evaluating resistance mech-
anisms in 43 patients with NSCLC treated with the
third-generation EGFR inhibitor rociletinib49. The
findings suggest that the pattern of resistance follow-
ing treatment with EGFR tyrosine kinase inhibitors
is drug specific. Of note, type of therapy, radiation
and chemotherapy dose, and exposure to the ther-
apy can affect the ctDNA shedding mechanism and
the level of ctDNA in the biofluids of cancer pa-
tients. Assessment of response to immunotherapy
in NSCLC patients revealed high concordance be-
tween ctDNA and radiographic analyses. Interest-
ingly, median time to initial therapy response mea-
sured using ctDNA was shorter than radiographic
analysis (24.5 days vs 72.5 days, respectively), suggest-
ing the highly sensitive clinical utility of ctDNA as a
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biomarker for therapeutic efficacy 50. Furthermore,
ctDNA levels in patients were used to assess the ef-
ficacy of combined therapies in the CheckMate 816
clinical trials. The study reported that ctDNA clear-
ance was higher among patients who received neoad-
juvant nivolumab plus chemotherapy than those who
only received chemotherapy. Although more studies
are required to establish the consistency of these find-
ings, they indicate the promising utility of ctDNA as
a surrogate marker of therapeutic efficacy.
ctDNA as a biomarker for monitoring minimal resid-
ual disease and recurrence
Cancer recurrence may not be clinically detectable
for an extended period after curative surgical resec-
tion. Detection of biomarkers specific to residual can-
cer cells is important because they are the most likely
source of cancer recurrence. The use of ctDNA for
this purpose has been reported51,52. For example,
Kwok and Wu53 and Scherer and Kurtz54 reported
that ctDNAwas detectable in diffuse large B-cell lym-
phoma patients at the time of recurrence. Of note,
ctDNA was detectable in minimal residual disease
(MRD) before clinical recurrence in 73% of the pa-
tients. Another study by Reinert and Henriksen55

demonstrated early detection of MRD using longi-
tudinal ctDNA data in patients with stage I–III col-
orectal cancer. Plasma analysis revealed that ctDNA-
positive patients had remarkably shorter recurrence-
free survival (RFS) compared with ctDNA-negative
patients. A separate study reported shorter RFS in pa-
tients who received adjuvant chemotherapy with pos-
itive ctDNA status56. Increased ctDNA level in liquid
biopsy has consistently been shown to be useful as an
indicator of potential early recurrence.

CHALLENGES OF CTDNA-BASED
BIOMARKERS
Despite the potential uses and applications of ctDNA,
there are three key limitations to using ctDNA. The
main challenge is that the method relies on a sin-
gle type of analyte—ctDNA. Therefore, the amount
of ctDNA, either in blood or urine, must be suffi-
cient for analysis5,6. In asymptomatic patients, a con-
centration of 1–10 ng/mL is required for the detec-
tion of ctDNA in a plasma sample34. A study by
Haque and Elemento57 reported that a large volume
of plasma is required to sufficiently detect the copy
number of a ctDNA mutation in early-stage cancer.
In breast cancer patients, a cutoff plasma DNA con-
centration was set at 120 ng/mL to achieve 100% sen-
sitivity in early screening of the disease58. Achiev-
ing this sensitivity requires approximately 150–300

mL of blood sample per screening test. Furthermore,
the percentage of ctDNA derived from cfDNA varies
widely (0.01–90%), which complicates the mutational
detection process. To circumvent the issue, technol-
ogy platforms should adopt genome-wide technolo-
gies that can detect mutations at single loci with fre-
quencies below 1% ctDNA25.
Second, for ctDNA to be utilized as a biomarker in
clinical settings, the technology and technique for its
detection and analysis must be accessible and prac-
tical to conduct in clinics or hospitals. Quantifica-
tion or detection technologies, such as polymerase-
chain reaction (PCR)-based methods (e.g. digital
PCR, BEAMing) are highly sensitive and are able to
detect ctDNA at very low allele frequencies (<1%);
however, only specific and predetermined gene al-
terations can be detected26. In contrast, massively
parallel sequencing, or next-generation sequencing,
provides an extensive range of genetic alterations of
the tumor. However, the technique requires dedi-
cated bioinformaticians to analyze the results. Fur-
thermore, the analysis must be carefully performed as
low allele frequency variants are not distinguishable
from background noise, which is often due to DNA
polymerase errors.
Third, because the field is still growing, standard ap-
proaches to liquid biopsy have yet to be developed.
These standards include methods for analyte extrac-
tion, confirmation of sample integrity, quantification,
and analysis. For example, in sample processing,
the presence of additional materials in serum derived
from leukocyte lysis during clotting can dilute the
ctDNA content25. The use of a stabilizer to increase
the available blood processing window also requires
attention, as certain components, such as heparin,
can interfere with PCR processing activity. Moreover,
techniques for processing plasma to extract plasma
ctDNA, such as a magnetic bead, affinity column, and
phenol-chloroform methods, vary in their ability to
purify ctDNA. Consequently, the total quantity of iso-
lated ctDNA can be skewed, leading to false negative
or positive outcomes. Establishing standards for these
aspects of liquid biopsy will ensure the quality of re-
sults to support valid interpretations and confidence
in decision-making.
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Table 1: ctDNA-based clinical trials in solid cancers

Type of cancer  Title Aim Stage of
clinical trial

Results References

Glioma, 
Intrahepatic
Cholangio-
carcinoma or
Chondrosarcoma

Metformin And 
Chloroquine in 
IDH1/2-mutated 
Solid Tumors
(MACIST)

To determine the occurrence of dose-
limiting toxicities (DLTs) and the max-
imum tolerated dose (MTD).

Phase Ib Detection of tumor specific IDH1 hotspot mutations
in ctDNA of patients with solid tumours treated with
metformin and choloroquine.

NCT02496741
59

BRAF mutant
melanoma

CAcTUS -  
Circulating 
Tumour DNA 
GuidedSwitch

To determine whether switching from
targeted therapy to immunotherapy
based on a decrease in levels of circu-
lating tumour DNA in the blood, will
improve the outcome in melanoma
patients.

Phase II ctDNA decrease prompts switch to immunotherapy
(nivolumab + ipilimumab)

NCT0380844160

Breast cancer BOLERO-2 Assessed the prevalence of ESR1 mu-
tations (Y537S and D538G) by digi-
tal droplet PCR (ddPCR) in ctDNA
from 541 metastatic BRCA patients
treated with exemestane combined with
everolimus or a placebo.

Phase III Suggest that ESR1 mutations emerge in ctDNA from
metastatic BRCA patients with prior aromatase in-
hibitors (AI) treatment, which can be detected by
ddPCR, their presence is related with more aggressive
tumours, andmight be used as biomarkers for predict-
ing outcome.

NCT00863655
61

PALOMA-3 To demonstrate the superiority of pal-
bociclib in combination with fulvestrant
(Faslodex) over fulvestrant alone to pro-
long PFS in women with HR+, HER2−
metastatic BRCA, with disease progres-
sion after a previous endocrine therapy.

Phase III Data have shown that patients with a high fraction of
ctDNA have an overall worse PFS.

NCT0194213562

Continued on next page
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Table 1 continued
Type of cancer Title Aim Stage of

clinical trial
Results References

Lung cancer MILD To measure the levels of cfDNA as a
biomarker to assess whether this anal-
ysis can identify individuals at higher
risk of cancer, improve the sensitivity
and specificity of imaging techniques or
both.

NA The findings demonstrated that lung cancer, regard-
less of stage, is substantially related with high levels of
cfDNA.
The ctDNA level was unable to distinguish between
healthy controls and patients with other tumours in
small lung malignancies.
ctDNA levels were found to be associated with disease
aggression and a poor prognostic predictor for sur-
vival. For tumours in Stage II–IV, ctDNA levels tended
to be significantly greater both at baseline and follow-
ing surgery.

NCT0283780963

BENEFIT To validate gefitinib response in lung
adenocarcinomas bearing EGFR muta-
tions

NA imply that patients who would not benefit from
EGFRTKI treatment can be identified through the
analysis of EGFR mutation dynamics through ctDNA
evaluation.

NCT0228226764

Non-small cell
lung cancer
(NSCLC)

To assess dynamic changes in ctDNA
levels in three treatment populations
containing patients with NSCLC.

NA ctDNA levels rise within hours to days of starting
treatment.
ctDNA testing during the acute post-treatment phase
can reveal results that were not visible during the pre-
treatment phase.
ctDNA can be used as an alternative to tissue-based
testing and can improve sensitivity for detecting
treatment-resistant clones.

NCT0398646365

Continued on next page
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Table 1 continued
Type of cancer Title Aim Stage of

clinical trial
Results References

Therapeutic Resis-
tance and Clonal
Evolution Assessed
With Liquid Biopsy
of NSCLC Patients in
China

To evaluate the concordance of clonal
mutations in ctDNA, using a 1021
gene targeted panel in plasma coupled
with tumour tissue from patients with
advanced-stage (IIB or IV) non-small-
cell LC.

EGFR gene dominant clones were present in 72 pa-
tients, and multivariate analysis revealed that these
clones constitute a distinct prognostic indication of
the effectiveness of EGFR-TKI first-line therapy.
Genomic data from tissue and ctDNA provide a more
comprehensive picture of new and current actionable
mutations that patients may benefit from additional
therapeutic targets that may improve illness progno-
sis.

NCT0305964166

Colorectal
cancer

AI-EMERGE Focus on development of a non-invasive
blood test for the early detection of can-
cer.
Implemented automated machine
learning (ML) to find and learn asso-
ciations between cfDNA profiles and
cancer ‘status’ to detect early-stage
CRC.
To evaluate the sensitivity and speci-
ficity of their test between CRC stages
and compare them with current
standard screening methods.

With 85% sensitivity and 85% specificity in CRC, it
was shown thatML-based analysis is beneficial for de-
termining the connection between a patient’s cfDNA
profile and cancer diagnosis.

NCT0368890667

Continued on next page
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Table 1 continued
Type of cancer Title Aim Stage of

clinical trial
Results References

ECLIPSE (Evaluation
of the ctDNALUNAR
test in an Average
Patient Screening
Episode)

To evaluate the performance character-
istics of a blood-based ctDNA LUNAR-
2 test to detect colorectal cancer in
a screen-relevant, average-risk popula-
tion.

Epigenomic technique dramatically improved ctDNA
identification compared to somatic mutational anal-
ysis alone, with a 94% specificity for early-stage CRC
patients (I-III).
Future CRC incidence and mortality rates may be sig-
nificantly affected by the usefulness of ctDNA testing
as a non-invasive approach for early identification of
CRC.

NCT0413600268
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FUTURE DIRECTIONS
Considerable progress has been made in the liq-
uid biopsy field. There is increasing evidence to
demonstrate the exemplary promise of ctDNA as a
biomarker for the real-time monitoring of recurrence
during the asymptomatic period. To provide a more
precise estimation of recurrence risk, a better un-
derstanding of the origin and biology of ctDNA is
needed. Further exploration of the association be-
tween ctDNA and cell apoptosis, necrosis, and shed-
ding mechanisms may prove beneficial. To achieve
this, more financial commitments, expertise sharing,
and academic interest must be invested to advance
our understanding of ctDNA release and clearance
mechanisms for better interpretation of existing re-
sults, especially because ctDNA is already being used
in clinical trials and clinical settings (Table 1). Stud-
ies in this direction may validate the consistency of
findings. In addition, at the time of authoring this
article, several clinical trials are being conducted to
evaluate the clinical utility of ctDNA as a surrogate
marker for treatment response, disease diagnosis, and
risk of recurrence. Future randomized trials com-
paring ctDNA-guided decision-making to the stan-
dard of care may provide better insight into the util-
ity of ctDNA in clinical oncology. Increasingly ad-
vanced genome sequencing technology for the analy-
sis of ctDNA will highlight the applications of the liq-
uid biopsy approach as an accurate and timely cancer
biomarker.

ABBREVIATIONS
BC: Breast cancer, cfDNA: cell free DNA, ctDNA:
Circulating tumor DNA, CTC: circulating tumor
cells, EGFR: epidermal growth factor receptor, EVs:
extracellular vehicles, TNBC: triple negative breast
cancer,MRD: minimal residual disease,mtDNA: mi-
tochondrial DNA, NSCLC: non-small cell lung can-
cer, RFS: recurrence-free survival
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