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ABSTRACT
Introduction: Many clinical studies have demonstrated that continuous exposure to pesticides,
especially organophosphates and pyrethroids, causes toxicities such as carcinogenicity and neu-
rotoxicity that lead to disorders such as diabetes, lung cancer, and neurodegenerative diseases.
Themechanism underlying pesticide-induced neurotoxicity involves the production of ROS, which
causes neuronal injury through oxidative stress. Methods: In the present study, the neuronal SH-
SY5Y cell line was used to investigate the effect of the pesticides chlorpyrifos (organophosphate),
aldicarb (carbamate), and deltamethrin (pyrethroid) on ROS-mediated toxicity and the protective
effect of alpha-2-macroglobulin (α2M), a protease inhibitor and beta-amyloid plaque scavenger
in the human brain. For cell viability and cytotoxicity, the MTT assay was performed. To moni-
tor ROS production, assays such as DCFHDA, H2O2, and MDA were performed, along with assays
of the activity of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase.
Results: The experimental findings suggest a cytoprotective role for α2M in ROS-mediated toxic-
ity that causes neuronal injury in humans. Conclusion: Hence, α2M could be possibly used as a
protective agent against oxidative neurotoxicity caused by pesticides.
Key words: Alzheimer's disease, SH-SY5Y, reactive oxygen species, neurotoxicity, deltamethrin,
chlorpyrifos, aldicarb, alpha-2-macroglobulin

INTRODUCTION
The pesticides chlorpyrifos (CPF), aldicarb (ALD),
and deltamethrin (DLM; Figure 1) are known to
cause both acute and chronic neurotoxicity in humans
and animals through the inhibition of cholinesterase
(ChE) activity in the synaptic junction of neurons,
binding to gamma-aminobutyric acid (GABA)-gated
channels by preventing the closure of sodium chan-
nels1. Humans are exposed to these pesticides in a
number of ways, such as the consumption of fruits
and vegetables contaminated with pesticide sprays
and the inhalation of fumigants2–5. Apart from caus-
ing substantial toxicity, these pesticides interfere with
normal neuronal processes in vivo, leading to oxida-
tive damage and cellular inflammation in the human
brain6–8. Some of the modifications caused by these
pesticides include oxidative stress9, disrupted neu-
rotransmission10 and neuronal differentiation11, in-
hibition of replication in neuronal cells12, cognitive
changes, decrease in psychomotor functions13, and
apoptosis in neuronal cells by their metabolites14–17.
Such changes in neuronsmay lead to various neurode-
generative diseases such as Alzheimer’s disease (AD)
and/or Parkinson’s disease (PD)18–20.
Alpha-2-macroglobulin (α2M) is produced in the hu-
man brain and keeps a check on reactive oxygen

species (ROS)21 and ß-amyloid plaque formation,
thereby preventing neuronal degeneration and AD
progression. α2M is a serum protease inhibitor that
may be involved inAD inmediating the clearance and
degradation of Aß, a major constituent of ß-amyloid
deposits22,23. α2M, an acute-phase protein and a
major component of the innate immune system, is a
cerebrospinal fluid (CSF) marker of neuronal injury
in preclinical AD [22]. An increased concentration
of α2M in the blood is associated with neuronal in-
jury 24. Previous studies have shown that α2M in-
teracts with the above mentioned pesticides3,21, in-
dicating the probable role of α2M as an unexplored
biomarker in pesticide-induced ROS-mediated neu-
rotoxicity 25. Hence, in the present study, α2M
was used to study the modulating/impairing effect of
pesticide generated ROS on the neuronal SH-SY5Y
(NCCS, Pune) cell line.26.

METHODS
Materials
All pesticides (CPF, ALD, and DLM) and chemicals
(MTT dye, DMSO, pyrogallol, DMEM and Ham’s
F12medium, fetal bovine serum [FBS], thiobarbituric
acid [TBA], 1% penicillin-streptomycin, dichlorodi-
hydrofluorescein diacetate [DCFH-DA], glutathione
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Figure 1: Structure of pesticides a) chlorpyrifos
b) aldicarb c) deltamethrin.

[GSH], and NADPH) were purchased from Merck-
Sigma (St. Louis, MO, USA). All other reagents used
were of analytical standard.

METHODS
Purification and characterization of human
α2M
The α2M protein was isolated and purified from hu-
man blood plasma using ammonium sulfate precip-
itation followed by gel exclusion chromatography as
per the method described previously 3. A 5% (w/v)
native PAGEwas performed21 and the gel was stained
with Coomassie brilliant blue R-250 (0.15% in 10%
acetic acid). The gel was de-stained for 12 h in the de-
staining solution (10% acetic acid), and the purified
α2M formed a single band on the gel.

Cell culture
The SH-SY5Y cell line was cultured in a medium con-
taining 1:1 DMEM andHam’s F12medium, 10% FBS,
and 1% penicillin-streptomycin26. The cells were
treated with a standard solution of pesticides and
α2M, accordingly, to perform the experiments. Cells
were used at 3–7 passages. The cells were divided into
five groups based on the treatmentwith pesticides and
proteins to obtain results for various stress markers.
Group I was the control group comprising only SH-
SY5Y cells under standard conditions (37 ◦C and 5%
CO2). Group II consisted of SH-SY5Y cells incubated
with α2M. The concentration of protein was 2 µM
and the incubation time was 3 h (37 ◦C). Group III
comprised pesticide (CPF, ALD, and DLM)-treated
SH-SY5Y cells. Cells were treated with 5 µM of each
pesticide (CPF, ALD, andDLM) separately for 3 h un-
der standard conditions (37 ◦C and 5% CO2). Group
IVwas the pesticides (CPF, ALD, andDLM) andα2M
group, in which the SH-SY5Y cells were treated with
5 µM of the pesticides for 3 h and then treated with
α2M for 3 h.

Cell viability and proliferation assay
To determine the cytotoxicity and cell viability of the
SH-SY5Y cells, the 3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide MTT assay was per-
formed in 96-well plates27. The cells were used at 70–
80% confluence. Later, the medium was removed and
the cells were treated with pesticides (CPF, ALD, and
DLM; 5 µM) for 6 h and later incubated with α2M
for 3 h. Afterward, the cells were treated with MTT
solution (5 mg/mL stock solution) at a final concen-
tration of 0.5 mg/mL MTT. The cells were incubated
for 4 h at 37 ◦C in 5% CO2. Finally, the cells were
treated with 100 µL DMSO for 10 min to dissolve the
formazan crystals. The absorbance was measured us-
ing an ELISA plate reader at 570 nm with a reference
wavelength of 630 nm and was directly proportional
to the number of viable cells. The experiments were
performed in triplicate.

Measurement of ROS
ROS production was measured using DCFH-DA28.
The cells were treated with α2M and the pesticides,
following which 10 µM DCFH-DA was added to the
medium for 1 h at 37 ◦C for diffusion into the cells. A
multi-detection microplate reader was used for fluo-
rescence measurement. The excitation and emission
wavelengths for DCFH-DA were 485 and 535 nm, re-
spectively 28–30.

Measurementofmalonaldehyde (MDA) lev-
els
To detect the generation of ROS by pesticides in the
neuronal cell line, the MDA levels were measured.
The MDA levels in SH-SY5Y cells were quantified
with the TBA reaction. Thiobarbituric acid reactive
substances (TBARS)weremeasured by comparing the
absorption to the standard curve of MDA equivalents
generated by the acid-catalyzed hydrolysis of tetram-
ethoxypropane31. The absorbance was recorded at
532 nm.

Measurement of superoxide dismutase
(SOD) activity
The antioxidant enzyme SOD converts superoxide
(O2

−.) into H2O2 and O2, which is converted to wa-
ter by other enzymes. The measurement was carried
out as described previously 32. To 80 µL of the cell
suspension, 2.82 ml of 0.05 mM tris-succinate buffer
was added, and the sample was treated for 30 min in a
CO2 incubator. The reaction was initiated by adding
100 µL of 8 mM pyrogallol solution to each well32.
The absorbance was read at 420 nm.
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Measurement of glutathione peroxidase
(GPx) levels
GPx are cytosolic enzymes that catalyze the conver-
sion of H2O2 into H2O and O2 and the reduction
of peroxide radicals (ROO.) into alcohol and oxy-
gen. GPx levels were measured by determining the
decrease in absorbance at 340 nm upon the oxidation
of NADPH to NADP+ 33.

Statistically analysis
All experiments were repeated thrice and the data
shown is the mean +- SD. P-value < 0.05 is considered
as significant difference.

RESULTS
Cell viability and cell cytotoxicity assay
The MTT assay was performed to assess cell viability
and cell proliferation activity, in which the quantity
of formazan is directly proportional to the number of
viable cells. The SH-SY5Y cells treated with all three
pesticides (CPF, ALD, and DLM) in group III showed
reduced cell viability (p < 0.001; Figure 1). Almost no
effect on viability was seen for cells treated with α2M
(group II), while the effect of the pesticides appeared
to be reversed in cells treated with pesticides after in-
cubation with α2M (group IV).

Measurement of ROS levels
Figure 3 shows the ROS levels induced by the pesti-
cides as monitored by DCFHDA in the control group
of SH-SY5Y cells and all three pesticides in group III
(p < 0.001). The increased fluorescence in group III as
compared to the control group and α2M group indi-
cates the production of ROS. On the contrary, group
IV showed a reduction in the fluorescence intensity as
compared to group III, indicating the defensive func-
tion of α2M against ROS production.

Measurement of MDA
Figure 4 shows the TBARS activity in the SH-SY5Y
cells in various groups. The highest MDA produc-
tion was recorded in group III, in which the cells were
treated with pesticides. However, group II showed
no TBARS production. Group IV (pesticides + cells
+ α2M), however, showed a reduction in the TBARS
level as compared to group III. The MDA levels were
normal in the control group and slightly reduced in
the α2M group (p < 0.001). However, MDA levels
were significantly decreased in the α2M + pesticides
+ cells group (p < 0.001) compared to the pesticides
group. Hence, the protective effects of α2Mwere ob-
served with respect to MDA levels due to pesticide-
triggered ROS in SH-SY5Y cells.

Measurement of SOD levels and GPx activ-
ity
Figure 5 shows the effect of various treatments on
SOD levels in the control and other groups. Group
III (pesticides group) showed reduced SOD activity
as compared to group I (control) and group II (α2M;
p < 0.001), demonstrating the toxicity triggered by
the pesticides. On the other hand, group IV (α2M +
pesticides + SH-SY5Y cells) showed a remarkable in-
crease in SOD and GPx activity levels, indicating the
protective effect of α2M against the pesticides. Ta-
ble 1 shows the effect of pesticides on the activity of
antioxidant enzymes in the cells. The pesticides group
showed reduced GPx activity as compared to the con-
trol group I and α2M group II, while group IV (α2M
and pesticides) showed increased GPx activity levels.

DISCUSSION
CPF, ALD, and DLM are potent neurotoxic pesti-
cides that affect various neuronal processes involved
in the synaptic transmission and growth of neu-
rons34–37. α2M is an acute-phase protein produced
in the brain to keep ROS levels under control3,21 and
prevent amyloid plaque formation by dissolving them
through receptor-mediated endocytosis. It also pro-
tects the brain from undergoing neuronal degenera-
tion25. α2M is also a major component of the innate
immune system and acts as a hallmark of neuronal
injury 21. The human brain synthesizes and secretes
α2M upon stimulation with interleukin-6, which in-
dicates that α2M is an acute-phase protein in the hu-
manCNS. In this study, we characterized ROS formed
by CPF, ALD, andDLM in the SH-SY5Y cell line. Fur-
thermore, we investigated the ability of α2M to mod-
ulate the neurotoxic effect of these pesticides. The cel-
lular toxicity of these pesticides on SH-SY5Y cells was
first measured by the MTT assay, which indicated the
toxic effects of the pesticides on the cell line.
DCFH-DA is a fluorimetric dye that is applied to
quantify ROS38. This non-fluorescent compound dif-
fuses into the cells, where it is sequentially hydrolyzed
to release DCFH as the substrate by intracellular en-
zymes. ROS oxidize DCFH and convert it into DCF, a
fluorescence product that is measured by spectroflu-
orometry using a microplate reader. A significant in-
crease in the production ofDCFwas seen in pesticide-
treated cells. This increased production of ROS results
in oxidative damage to cellular components. How-
ever, when α2Mwas incubated with pesticide-treated
cells, a contrary effect was observed. Similarly, re-
gardingMDA levels, pesticide-treated groups showed
a significant increase in absorbance, but in group IV, a
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Figure 2: MTT assay of various groups of SH-SY5Y cells and all three pesticides (CPF, ALD, and DLM). Cells
were pretreated with pesticides at 5 µM for 3 h and then incubated with α2M for 3 h. After incubation, cell via-
bility was evaluated by the MTT assay. The results are shown as the mean± SEM of three experiments, with each
experiment performed in triplicate (p < 0.001 versus control). Group II is not statistically significant to Groups I, III
and IV.

Figure 3: DCFHDA ROS assay of SH-SY5Y cells. ROS were determined by the DCFH-DA method. DCFH-DA
measurements are reported as fluorescence intensities (AU, arbitrary fluorescence units). Results aremean± stan-
dard error of triplicates. The error bar depicts the standard error among the six different samples of that group.
Cells were incubated with 5 µM of each pesticide for 45 min, and the α2M concentration was 2 µM. Excitation
and emission wavelengths for DCFH-DA were 485 and 535 nm, respectively. Group II is not statistically significant
to Groups I, III and IV.
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Figure 4: MDA level assessment in cell lines after pesticide exposure and treatment with α2M. Absorption
spectra were measured at 532 nm. The presented experiments were performed in triplicate (p < 0.005). Group II
is not statistically significant to Groups I, III and IV.

Table 1: Effect of pesticides on the activity of antioxidant enzymes
of the groups

Enzyme Control CPF ALD DLM

SOD 1.6± 0.140 0.90± 0.086 1.4± 0.131 0.88± 0.041

GPx 24.4± 2.25 18.3± 1.31 20± 0.100 16.3± 0.07

SOD and GPx measurements are reported in µmol/min/mg cells for SOD and
nmol/min/mg cells for GPx (SOD, superoxide dismutase; GPx, glutathione peroxi-
dase).

decrease in absorbance was observed, suggesting the
potential effect of α2M on pesticide-treated cells, in
contradiction with results obtained for group IV. Re-
garding antioxidant enzymes, SOD and GPx activi-
ties were quantified at 420 nm and 340 nm, respec-
tively, and reported as units per milligram of cells for
SOD and nanomoles perminute permilligramof cells
for GPx39. The results obtained for groups III, IV,
and V suggest a cytoprotective role for α2M against
ROS-mediated toxicity induced by the pesticides. Be-
cause proteases and ROS work through a common
mechanism of inflammation, like in diseases such as
atherosclerosis40, these findings also indicate the pro-
tective role of α2M in preventing damage to various
cellular species by ROS apart from trapping proteases.

CONCLUSIONS
Our data showed that the selected pesticides were po-
tent neurotoxic agents, while α2M decreased the cy-

totoxic effect of these pesticides. Hence, this study
showed that α2Mmodulates pesticide-induced ROS-
based neurotoxicity based on different parameters.
Thus, α2M could possibly be used as a protective
agent against neurotoxicity caused by ROS and pes-
ticides, warranting further experimental studies.

ABBREVIATIONS
a2M: alpha-2-macroglobulin, ALD: aldicarb, CPF:
chlorpyrifos, DCFHDA: dichlorodihydrofluorescein
diacetate, DLM: deltamethrin, GPx: glutathione per-
oxidase, H2O2: hydrogen peroxide, MDA: malon-
dialdehyde, melonaldehyde, ROS: reactive oxyhen
species, SOD: superoxide dismutase, TBA: thiobar-
bituric acid, TBARS: thiobarbituric acid reactive sub-
stances
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Figure 5: Measurement of SOD activity at 420 nm. The activity was reported in mmol/cells for SOD. Group II is
not statistically significant to Groups I, III and IV.
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