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ABSTRACT
Themetabolic process of normal cells in general and of cancer cells in particular requires an impor-
tant molecule—oxygen. In tumors, the oxygen level tends to decrease gradually from the outer
layers to the central core, leading to a condition termed ``hypoxia.'' Changes in the oxygen level
modify the signaling pathways and metabolic activities of cancer cells. Basically, tumor develop-
ment is divided into three stages: initiation, promotion, and progression. Among them, the effects
of hypoxia are most evident during tumor progression. In this review, we summarize previous find-
ings on the mechanisms underlying hypoxia-induced alterations in the expression of genes and
proteins associated with hypoxia-inducible factors (HIFs), which play a central role in the develop-
ment of malignancy in many types of cancer. We also present the latest evidence on HIF-targeted
cancer treatment that yields positive outcomes in vitro and in vivo.
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INTRODUCTION
Cancer is a group of diseases with a leading mortality
rate and a high recurrence rate owing to the absence of
effective targeted therapies. Therefore, in-depth un-
derstanding of its characteristics is crucial in treating
this fatal disease.
Recently, hypoxia has emerged as a novel candidate
in targeted therapy for cancer. Hypoxia exists in solid
tumors (e.g., breast, pancreatic, liver, lung, cervical,
ovarian, or colon cancer)1 as well as liquid tumors
(e.g., leukemia)2. It has been shown to influence the
malignant properties of tumors and to induce resis-
tance to cancer treatment3. Signaling pathways re-
lated to hypoxia-inducible factors (HIFs) play a cen-
tral role inmetabolism adaption of cancer cells4, con-
tribute to adaptive immune escape5, regulate angio-
genesis, and promote cell proliferation and survival
and tumor progression6. Hence, hypoxia is consid-
ered to affect several hallmarks of cancer7.
Maintaining the level of cellular oxygen is crucial to
cell fat, since oxygen molecules act as terminal ac-
ceptors in the electron transmission chain to create
ATPs during oxidative phosphorylation8. This pro-
cess leads to reactive oxygen species production, con-
sequently causing cell death owing to DNA damage
and genomic instability 8,9.
The tumor oxygen level typically ranges from 0.3%
to 2.2% in various types of cancer10, and the oxy-
gen level gradient reduces gradually from the periph-
ery to the center of tumors (Figure 1)11. If an in-
creased oxygen level is required in tumors, they may

induce angiogenesis with dysfunctional blood ves-
sels, consequently leading to different hypoxic sta-
tuses and tumor aggressiveness8. Rates of cell prolif-
eration higher than those of new vessel formation in
tumors lead to unequal perfusion and acute hypoxia
among tumor regions. Gradually, strongly prolifer-
ative cancer cells accumulate and settle in areas un-
reachable by nutritive blood vessels, thereby causing
chronic hypoxia. Both acute and chronic hypoxia can
contribute to therapy resistance12.
In the present review, we summarize several ma-
jor roles of hypoxia in tumor development and pro-
vide the latest information on hypoxia-targeted can-
cer treatment.

HYPOXIA AND TUMOR INITIATION
AND PROMOTION
Tumors are formed owing to an uncontrolled divi-
sion of cells. This loss of control is caused by er-
rors in genomes and chromosomes through chemical,
physical, or biological agents. Defects largely due to
DNA replication and repair lapses, oncogene muta-
tions, chromosomal instabilities, and tumor suppres-
sor gene mutations are fundamental for tumor initia-
tion13,14.
Several research has shown a relationship between
chronic hypoxia and tumor initiation both in vitro and
in vivo. HIF-1α reduces the ability to repair DNA
damage and causes gene mutations in cells grown un-
der hypoxic conditions. Under severe hypoxic condi-
tions, replication is unstable, which may lead to some
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Figure 1: Oxygen concentration-based partional structure in cancer tumors with possible niche for cancer
stem cells in the center necrotic core.

errors in DNA replication15. Previous studies have
revealed genomic instability of prostate cancer cells
cultured under hypoxic conditions, which substan-
tially contributes to tumor initiation. HIF-1α also up-
regulates human telomerase reverse transcriptase to
restore the telomere, leading to intractable cell prolif-
eration and triggering tumor promotion and forma-
tion16. It is involved in the regulation of cell death
through various mechanisms in many cell types17.
Depending on the conditions of action, apoptosis
is either activated or inactivated with the regulation
of the expression of p53 or BCL-2 family signaling
pathways17,18. Under chronic hypoxic conditions,
HIF-1α upregulates p53 via various mechanisms but
mostly inhibits apoptosis through indirect effects on
MDM2 to inactivate this gene18. HIF-1α also inhibits
BAX and activates BCL-2 to prevent mitochondrial c-
cytochrome release and inactivate apoptosis17. Based
on these correlational factors between hypoxic condi-
tions and basic factors of tumor formation, hypoxia
may induce tumor initiation.

HYPOXIA AND TUMOR
PROGRESSION
Hypoxia and angiogenesis
To increase the intra-tumor oxygen level, primary tu-
mors have to induce angiogenesis and form new ves-
sels supplying oxygen-rich blood from the arteries for
feeding. Angiogenesis is of great importance in tu-
mor growth. In the absence of angiogenesis, defined

as the process that creates new arteries and veins from
preexisting blood, tumors remain dormant, maintain-
ing an equal state between cell survival and death19.
Genes associated with angiogenesis, such as vascu-
lar endothelial growth factor (VEGF), angiopoietin
(ANG), and platelet-derived growth factor (PDGF),
are some representative proteins in the downstream
targets of HIFs20.
VEGF has been isolated, identified, and studied in
vitro and in vivo in mammals in the early 1990s.
German scientists have claimed that VEGF mRNA is
overexpressed during the formation of new blood ves-
sels in mouse embryos, which indicates that VEGF
and its receptors VEGF-R1 and VEGF-R2 are ma-
jor factors in mammalian angiogenesis21,22. Previ-
ous studies suggest a link between HIF-1α and VEGF
not only in cancer23 but also in other diseases24. Un-
der the phosphorylation of specific protein 1 (Sp1)
and HIF subunit and recruitment of VEGF pro-
moters, transcription is triggered under the effect
of the Ras/MEK/extracellular signal-regulated kinase
(ERK) pathway. The expression of VEGF-A mRNA
can be increased by the PI3K/AKT pathway andmod-
ified by activator protein-125. The phosphorylation
of HIF-1α and coactivator p300 induces transcrip-
tional activation via ERK, whose pathway attracts the
connection between RNA polymerase II and VEGF
promoters. At the other regulation levels, the tran-
scription of VEGFmRNA is stabilized through stress-
activated kinase p3826. At the translational level,
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the internal ribosome entry site (IRES) sequences
are inserted in the middle of the 5’ non-coding re-
gions of VEGF-A mRNA27 and HIF-1α mRNA28.
The interference of the IRES between these two com-
ponents accounts for the translation under hypoxic
conditions and nutrient deprivation. Normally, the
cap-dependent translation often halts in such hypoxic
and nutrient-deprived conditions. However, VEGF
is considered an “existing” factor that continues to
be translated under hypoxia29. Some studies have
demonstrated the complementary roles of HIF-1α
and HIF-2α in angiogenesis. In particular, HIF-
1α enhances vessel growth, while HIF-2α promotes
vessel maturation30,31. Recently, several new tran-
scription factors, microRNAs (miRNAs), and RNA-
binding proteins have been demonstrated to be cru-
cial for axis HIF-1α/VEGF signaling in tumor pro-
gression. Zinc finger homeobox32, Bcl-2-associated
transcription factor 133, and miRNA-574-5b34 are
typical examples of factors that regulate the ability to
induce angiogenesis under hypoxic conditions within
tumors.
In addition to VEGF, the ANG protein family (ANG-
1, ANG-2, and ANG-4) also contributes to many
aspects of angiogenesis35,36. Early upregulation of
ANG proteins has been observed in hepatocellular
carcinoma37, glioblastoma38,39, and squamous cell
carcinoma40, in which their effect on tumor angio-
genesis differs from that of VEGF during tumor pro-
gression. ANG-1 or ANG-4 and ANG-2 affect Tie-
2 receptor, a tyrosine kinase receptor selectively ex-
pressed in the vascular endothelium41, on opposite
directions. While ANG-1 or ANG-4 binds to and
phosphorylates Tie-2, resulting in vessel stabilization
and remodeling, ANG-2 acts as an antagonist of Tie-
2 to destabilize and regress the vessels36. However,
this inhibitory effect of ANG-2 can be prevented un-
der the presence of VEGF derived from avascular and
hypoxic tumors owing to tumor vessel decline41. The
ANG-1/ANG-2 ratio markedly contributes to physio-
logical angiogenesis42, since a reduction in this ratio
under hypoxiawith an increased level of VEGF results
in tumor vessel formation39,43. ANG-2 secreted from
human melanoma cells is also believed to be a prog-
nosticmarker formetastasis44, indicating that it plays
crucial roles not only in angiogenesis but also in other
aspects during tumor progression. Thus, blocking the
expressions of VEGF and ANG-2 is a new and effec-
tive strategy to lessen brain and lung metastases45,46.
PDGF, which has been first identified in platelets, is an
important factor in blood vessel regulation47. PDGF
isoforms interact with their tyrosine kinase receptors
to perform various physiological functions48. Gene

mutations of PDGF receptors have been observed in
different malignant tumors48, which may lead to dis-
turbances in related signaling pathways49. In os-
teosarcoma, an increased level of PDGF-BB and its
receptor is transcriptionally dependent on HIF-1α to
promote cell proliferation and migration under hy-
poxic conditions50. Overexpression of HIF-1α is re-
lated to an increased expression of PDGF-BB in inva-
sive breast cancer cells51, which contributes to lym-
phatic vessel density and lymph node metastasis52.
The proportional relationship between HIF-1α and
PDGF-BB is regulated by AKT, forming an autocrine
loop that may increase cisplatin resistance in hepato-
cellular carcinoma53. Similarly, hypoxia was found to
enhance the HIF-1α/PDGF-D/PDGFRα/AKT path-
way, which accelerated cell growth and invasion in
glioblastoma54. Only HIF-1α appears to play a cen-
tral role in the regulation of PDGFs, since no stud-
ies have confirmed a link between other HIFs and
PDGFs.

Hypoxia and epithelial–mesenchymal tran-
sition
Epithelial–mesenchymal transition (EMT) is crucial
in the invasion and metastasis of tumors, as cells
lose their epithelial differentiation to acquire the
mesenchymal phenotype, which allows them to de-
tach from primary tumors and disseminate into stro-
mas55. Hypoxia is notably a hallmark of cancer and
is believed to induce EMT via HIFs in various types
of cancer20,56–60. HIF-1α or HIF-2α upregulates the
Wnt/β -catenin signaling pathway to enhance the bi-
ological features related to EMT, which helps tumor
cells survive and proliferate during hypoxia56,58. In
contrast, HIF-3α isoform 2 binds to and destabilizes
β -catenin to inhibit Wnt signaling, which is involved
in stem cell renewal and tissue homeostasis61.
Loss of E-cadherin and switching to N-cadherin are
also considered a marker of EMT owing to their
main role in cell–cell adhesion in epithelial cell mem-
branes62. Twist63, zinc finger E-box binding home-
box (ZEB) 1/264,65, Snail66, and Slug67,68 are major
transcription factors directly or indirectly responsible
for this cadherin switch in metastatic cancer. Con-
sequently, blocking these factors has been recently
suggested as a new strategy for preventing metastatic
cancer69–72. Their expressions seem to be affected
by HIF-1 signaling. In hypoxic HeLa cervical cancer
cells, the expression levels of miR-21 andmiR-210 are
increased, thus targeting and downregulating HECT
domain E3 ubiquitin ligase 1 and consequently in-
creasing Snail expression to attenuate the E-cadherin
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level73. MiR-21, miR-210, and several other miRNAs
act as downstreammolecules of HIF-1α in relation to
cancer cell viability and migration74–76. Slug is also
an E-cadherin direct regulator, which is upregulated
by dimethylation of lysine demethylase 3A or bind-
ing of OCT4B under hypoxic conditions77,78. Mean-
while, hypoxia enhances Bcl-2–Twist interaction by
facilitating the binding of Bcl-2 to Twist, forming a
protein complex and then targeting Bmi-1 to cause
changes in EMT-related proteins in cancer cells79,80.
Interestingly, HIF-2α stimulates Twist-2 to bind to
the E-cadherin promoter through the P2 region and
activates EMT in pancreatic cancer81. Additionally,
HIF-1α directly inhibits E-cadherin via miR-421 sig-
naling or miR-205/ASPP2 axis in cancer cells82,83. It
also controls EMT and the stem cell-like phenotype of
liver cancer cells via miR-19184.
Transforming growth factor (TGF)-β , released by
cancer cells, stromal fibroblasts, and other cells in the
tumor microenvironment, has a key role in promot-
ing EMTduring cancer progression andmetastasis85.
The phosphorylation of the binding between TGF-β
and its receptor TGFR1 and TGFR2 promotes the ac-
tivation of Smad2 and Smad3, which form a trimer
with Smad4. This complex then displaces into the nu-
cleus, in which a synergic action of the DNA binding
transcription factors SNAIL, ZEB, and TWIST con-
nects to the regulation of the target genes of TGF-
β 86. The activity of EMT-related transcription factors
can be increased during the combination of the Smad
complex with any targeted effects87. The activation
of co-bindings between Smad3 and Smad4 caused by
TGF-β leads to several events, including the repres-
sion of E-cadherin and inhibition of the gene expres-
sion owing to the dual interaction with SNAIL188, in-
creasing the expression of TWIST owing to the dual
interaction between Smad3 and Smad4 originating
from the interaction with activating transcription fac-
tor 3 to suppress the expression of ID189. TGF-β1
triggers the downregulation of prolyl hydroxylase-2
via a Smad-dependent signaling pathway, leading to
the accumulation of HIF-1α and EMT90.
Notch is considered a major receptor involved in the
induction of the EMT signaling pathway under hy-
poxia. During downstream regulation, Notch regu-
lates SNAIL in two different synergistic methods: di-
rect or indirect regulation. The recruitment of the
Notch intracellular domain to the SNAIL promoter
leads to direct upregulation of SNAIL with the com-
bination of the transcriptional complex with HIF-1α
and to indirect upregulation of SNAIL with an in-
crease in the levels of LOX protein stemming from the
combination of HIF-1α with the LOX promoter91.

SNAIL and SLUG, the two transcriptional repressors
involved in EMT, also aim at the Notch signaling
pathway 92. In breast cancer cells, an increase in the
expression of SNAIL and SLUG, which follows the
accumulation of HIF-1α and HIF-2α , reduces the
expression of E-cadherin93. Notch activity has also
been reported in lung cancer stem cells (CSCs) via the
expression of spheroid growth in cell cultures, high
rate of chemoresistance, and tumor formation in the
cell injected to the CSCs of NOD/SCID mice94. In
addition, the Notch signaling pathway can induce cell
cycle arrest and apoptosis, which are key steps in car-
cinogenesis95–97.

Hypoxia and tumor invasion and metasta-
sis
Malignant cancer is characterized by the formation
of secondary tumors through invasion and metasta-
sis. Under hypoxic conditions, HIF-1α and HIF-2α ,
controlled by the c-Jun NH2-terminal kinase path-
way, are involved in the migration of gastric cancer
cells98; thereby, HIFs play a crucial role in this onco-
logical process.
Changes in the HIF-1α level strongly induce the
expression of mRNAs encoding for urokinase-type
plasminogen-activator receptor, metalloproteinase-2
(MMP-2), and cathepsin D, proteins involved in the
degradation of the extra-cellular matrix, and dis-
rupt basement membrane invasion in colon can-
cer99, esophageal carcinoma100, and prostate can-
cer101. Via ZEB-2, HIF-1α downregulates EphrinB2,
whose low expressions cause tumor invasiveness in
human glioma102. Recently, the expression of other
downstream targets of HIF-1α , including right open
reading frame kinase-3 involved in the organization
of actin cytoskeleton103, v-maf musculoaponeurotic
fibro-sarcoma oncogene homolog F104, and SP1105,
has also been demonstrated to increase when can-
cer cells are exposed to low oxygen levels, which pro-
motes cell invasion and metastasis. In breast can-
cer, hypoxia induces the upregulation of ADAM12,
thereby activating EGFR/FAK signaling and inducing
lung metastasis in SCID mice106, which may be as-
sociated to poor outcomes. In hypoxic non-small-
cell lung cancer, Twist not only inhibits E-cadherin
expression but also directly increases the cancer cell
motility rate107. Overexpression of Twist upregulates
AKT2 in the late stages of breast cancer108, inducing
its aggressiveness, and enhances Tcf-4/Lef DNA bind-
ing, promoting invasion and cell migration in gastric
cancer109. Such overexpression has been proven to be
directly induced by the upregulation ofHIF-1α under
hypoxia110.
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HIF-2α also promotes invasion andmetastasis of can-
cer cells via the upregulation of Twist and CXCR4
in papillary thyroid carcinoma111. In hepatocellular
carcinoma, Wang et al. found that HIF-2α directly
regulates the transcription of stem cell factor, increas-
ing the expression of MMP-2 and promoting cancer
cell invasion112. The E2F3 transcriptional regulatory
pathway is considered to induce an overexpression
of HIF-2α owing to many steps in cancer progres-
sion113. Furthermore, HIF-2α is found to be highly
expressed compared with HIF-1α when ovarian can-
cer cell lines enter the hypoxic state and becomemore
invasive114. Down- or upregulation of both HIF-1α
and HIF-2α is related to a higher or lower expres-
sion of insulin-like growth factor binding protein-3,
respectively 114, which has been demonstrated to sup-
press tumor angiogenesis and growth arrest115. HIFs
can either affect or be affected by upstream and down-
stream factors to regulate the invasive and metastatic
capabilities of cancer cells.
HIF-3α has recently been demonstrated to regu-
late pancreatic cancer invasion and metastasis via
RhoC/ROCK1 signaling116. Further experiments are
required to confirm the role of HIF-3α in cancer pro-
gression.

Hypoxia and immune escape from cancer

The immune system regulates tumor biology by in-
hibiting the malignant characteristics of tumors. Im-
mune escape from cancer suppresses the effects of im-
mune cells and allows resistance to the cytotoxicity of
immune effectors, and hypoxia may contribute to this
process129. Under hypoxic conditions, tumor cells re-
lease immunosuppressive molecules129. In hepato-
cellular carcinoma, hypoxia positively influences the
expression of S100, heat shock proteins, and high-
mobility group B1 in tumor cell-released autophago-
somes, which induces the production of IL-10 and B-
cells with the ability to hamper T-cell proliferation
and function130. As T-cells can kill tumor cells by
binding to their receptors131, and they are considered
main targets in cancer immunotherapy 132, their inhi-
bition may decrease the effectiveness of cancer treat-
ment. TGF- β , a multifunctional cytokine and T-cell
proliferation suppressor133, is also highly expressed
in gastric cancer134 and glioblastoma135, along with
HIF-1α . TGF-β converts naive T-cells to regulatory
T-cells136, thereby ameliorating the function of natu-
ral killer cells137, and remarkably suppresses themat-
uration of dendritic cells138, whichmay reduce the ef-
fectiveness of the antitumor activities of the immune

system. Nevertheless, hypoxia sometimes supports T-
cell development via stimulation of CD137 on the T-
cell surface in patients with colon carcinoma139 or in
anti-VEGF-treated mice140.
Hypoxia also alters cell surface molecules that may
bind to immune checkpoints in T-cells to induce
immune escape. Programmed cell death protein-
1 and cytotoxic T lymphocyte-associated antigen-4
are two main immune checkpoints in T-cells that
downregulate T-cell pathways when conjugated to
their ligands (PD-L1 and PD-L2 or CD80 and CD86,
respectively)141. Multiple drugs with the ability
to inhibit these two molecules have been studied
and developed to treat many types of cancer; these
drugs include ipilimumab142, nivolumab143, pem-
brolizumab144, atezolizumab64,65,145,146, and treme-
limumab147. Both HIF-1 and HIF-2α directly bind
to hypoxia response element-4 in the PD-L1 proxi-
mal promoter, thereby upregulating the expression of
this ligand in tumor cells and mediating the suppres-
sion of T-cells148,149. Enhancer of zeste homolog-2
potentially affects the expression of PD-L1 via HIF-
1α 150. HIF-1α-induced PD-L1 increases the resis-
tance to cytotoxic T lymphocyte-mediated lysis and
leads to T-cell apoptosis in cancer cells5.

Hypoxia and therapy resistance
HIFs have been confirmed to be related to miRNAs
in promoting cancer therapy. Many miRNAs con-
trol the transcriptional activity of HIFs. For instance,
miR-199a is suggested to be a tumor suppressor, since
its downregulation under hypoxic conditions results
in an overexpression of HIF-1α and is associated
with increased cisplatin resistance in osteosarcoma
cell lines151. While hepatocellular cancer cells are re-
sistant to 5-flourouracil, overexpression of miR-183
significantly reduces the expression of isocitrate de-
hydrogenase 2 or suppressor of cytokine signaling 6,
which is related to the upstream signaling of HIF-
1α 152. On the contrary, upregulation of miR-21 may
lead to an overexpression of HIF-1α and promote
resistance to cisplatin in lung adenocarcinoma cell
line A54966. Further, miR-193a-3p negatively regu-
lates the expression of SRSF2 via the hypoxia signal-
ing pathway to promote radio-resistance among na-
sopharyngeal cancer cell lines153. In general, miR-
NAs either directly or indirectly increase the expres-
sion ofHIFs, thereby causing therapy resistance in dif-
ferent cancer cell lines.
Conversely, some miRNAs have been reported to act
as downstream factors of HIFs. In bladder cancer,
cisplatin attacks and upregulates HIF-1α , increasing
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Table 1: Hypoxia induces autophagy in cancer cells to adapt to cancer therapies

Type of cancer Related 
hypoxia genes

Autophagy markers Therapy-resistance Referrence

Bladder cancer HIF-1α LC3-II Gemcitabine 117

Bladder cancer HIF-1α Beclin-1 Cisplastin 118

Hepatocellular carcinoma N/A FOXO3a Sorafenib 119

Hepatocellular carcinoma N/A LC3-II Cisplastin
Epirubicin
Gemcitabine
Mitomycin

120

Lung cancer N/A N/A Cisplastin 121

Lung cancer N/A N/A Radiotherapy 20

Lung cancer HIF-1α LC3-II
Beclin-1
p62

Radiotherapy 122

Colon cancer HIF-2α N/A 5-flourouracil
CCI-779

109

Colon cancer HIF-1α Beclin-1
Atg12
LC3-II

Radiotherapy 123

Ovarian cancer HIF-1α N/A Cisplastin 124

Cervical cancer HIF-1α LC3-II
Beclin-1,
Atg12-Atg5
Atg7
p62

Paclitaxel 125

Breast cancer N/A Beclin-1
Atg12-Atg5
Atg7

Ionizing radiation 126

Osteosarcoma HIF-1α LC3 Radiotherapy 127

Glioblastoma HIF-1α Atg5 Temozolomide 128

Astrocytoma HIF-1α Atg5 Temozolomide 128

the level of miR-424. MiR-424 may mediate the sup-
pression of UNC5B and SIRT, decreasing the num-
ber of apoptotic cancer cells induced by cisplatin154.
In contrast, HIF-1α upregulated in hypoxic colorectal
cancer cells directly inhibitsmiR-338-5p and activates
the IL-6/STAT3/Bcl-2 pathway, consequently caus-
ing resistance to cisplatin155. Hypoxia also dimin-
ishes the efficacy of sorafenib in treating hepatocellu-
lar carcinoma by inhibiting the androgen receptor and
miR-520f-3p to increase the expression of SOX9 and
modulate the stem-like phenotype within liver can-
cer cells156. However, the link between hypoxia and
miRNAs requires further clarification. Nonetheless,
both are known to be involved in cancer therapy re-
sistance.

Autophagy is anothermechanism of hypoxia that me-
diates therapy resistance in cancer cells. Several stud-
ies have reported the effect of hypoxic conditions
on the ability of cancer cells to resist therapy (Table
1). HIFs, mainly HIF-1α , either activate or inacti-
vate transcription factors participating in autophagy.
In glioblastoma and astrocytoma cells, HIF-1α neg-
atively regulates miR-224-3p, thereby enhancing the
expression of Atg5 and FIP200, inducing autophagy,
and postponing chemosensitivity in vitro and in
vivo128,157. Similar results were obtained in colorec-
tal cancer cells and tissues. HIF-1α downregulates the
expression of miR-20a to mediate hypoxia-induced
autophagy via the upregulation of Atg5/FIP200 sig-

5366



Biomedical Research and Therapy 2022, 9(10):5361-5374

naling158. It also positively controls astrocyte ele-
vated gene-1 in T-cell non-Hodgkin’s lymphoma and
promotes autophagy-induced chemoresistance under
hypoxia159. Since chemotherapy and radiotherapy
usually induce apoptosis160,161, tumor cells activate
autophagy to digest damaged cellular components.
Hypoxia-induced autophagy either positively or neg-
atively contributes to the regulation of immune escape
from cancer129.

TARGETING HIFS FOR CANCER
TREATMENT
Owing to the crucial roles of HIFs, especially HIF-1α ,
in tumor development, cancer treatment has recently
involved the use ofHIF inhibitors. There are two types
of HIF inhibitors: direct and indirect162. However,
regardless of the type, the ultimate purpose of these
inhibitors is to completely blockHIF-related signaling
pathways, thereby reducing the malignant properties
of cancer tumors.
Temsirolimus and everolimus are examples of indi-
rect HIF inhibitors clinically used in treating renal
cell cancer67. These drugs inhibit the activity of
mTORC1, thereby destabilizing HIFα signaling path-
ways67. Recently, natural compounds isolated from
plants have been utilized in cancer drug development.
For instance, cardamonin, a chalcone extracted from
Alpinia katsumadai, inhibits HIF-1α activity and tu-
mor angiogenesis in breast cancer xenograft models
through the mTOR/P70S6K pathway 163. Apigenin
inhibits HIF-1α protein expression by downregulat-
ing the PI3K/AKT pathway and enhancing the sta-
bility of p53 in ovarian, prostate, and breast can-
cer cells164. Genipin, derived from Gardenia jas-
minoides, inhibits HIF-1α accumulation under hy-
poxic conditions in various cancer cell lines and pre-
vents invasion of colon cancer cells by downregu-
lating the ERK signaling pathway 68. Even a short
exposure to shikonin, extracted from Lithospermum
erythrorhizon, suppresses NF-kB activity and thereby
downregulates HIF-1α protein during lymphangio-
genesis165. These suggest the great potential of using
plant-derived compounds in cancer treatment target-
ing HIF signaling pathways.
Generally, direct HIF inhibitors downregulate the ex-
pression of HIFs by suppressing the transcriptional
and translational activities or disrupting the connec-
tion with other proteins67. Instead of reducing the
HIF-1α level, arylsulfonamide KCN1 interferes with
the interaction between HIFs and p300/CBP to in-
hibit glioma growth in vitro and in vivo69. In a pilot
trial, the use of EZN-2968 in 10 patients with differ-
ent types of cancer yielded positive outcomes, since it

decreased the HIF-1α mRNA and protein levels166.
Hypoxia contributes to tumormalignancy by control-
ling downstream targets, with HIFs playing a cen-
tral role. Aminoflavone (AF), which has been stud-
ied in phase II clinical trials on cancer treatment, also
specifically inhibits HIF-1α transcriptional activity
and avoids HIF-1α and HIF-2α in several cancer cell
lines167. It diminishes tamoxifen resistance by sup-
pressingα6-integrin and inducing BAX expression in
tamoxifen-resistant breast cancer cells168. Belzutifan,
an advanced pharmacologic agent blocking HIF-2α
activity by allosterically interfering with its interac-
tion with HIF-1169, is safer and more effective for pa-
tients with von Hippel–Lindau disease-associated re-
nal cell carcinoma170; it was approved by the United
States Federal DrugAdministration for use in patients
with non-metastatic tumors171. Sanguinarine blocks
HIF-1α translocation and reduces hypoxia-induced
EMT marker and VEGF levels in hepatocellular car-
cinoma172. Panaxadiol, isolated from Panax ginseng,
inhibits PD-L1 expression by blocking HIF-1α pro-
tein synthesis and restores T-cell activity to kill colon
cancer cells in co-culture models173. These examples
propose a novel strategy for drug combinations in fu-
turistic cancer treatment (Figure 2).

CONCLUSION
Hypoxia plays a pivotal role in cancer progression.
Regulation of HIFs under hypoxic conditions changes
the expression of their target genes and related path-
ways to cause tumor aggressiveness, including angio-
genesis, EMT, metastasis, immune escape, and ther-
apy resistance. New methods developed to specif-
ically inhibit HIFs and their signals have initially
demonstrated their effects in vitro and in vivo. Fur-
ther clinical trials are necessary to confirm the roles
of these compounds in cancer treatment targeting hy-
poxia.

ABBREVIATIONS
AKT: Ak strain transforming, ANG: angiopoietin,
Atg: autophagy-related gene, BAX: BCL-2-associated
X, BCL-2: B-cell lymphoma 2, CD: cluster differ-
entiation, CSC: cancer stem cell, EMT: Epithelial–
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Figure 2: New and novel strategies in drug development targeting HIFs in cancer treatment during last
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