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ABSTRACT
Introduction: In recent years, green synthesis of silver nanoparticles using natural products has
been increasingly utilized in the biomedical field as a therapeutic approach formanaging neurode-
generative diseases. This study aimed to determine the effects of silver nanoparticles synthesized
using Tualang honey (THSN) on seizure activity and locomotor and memory functions in rats after
kainic acid (KA) induction. Methods: Male Sprague Dawley rats were randomly divided into six
groups (n = 6/group), and each group was pre-treated orally with either distilled water or THSN (10
mg/kg or 50 mg/kg), according to their respective groups. Each rat was injected subcutaneously
with KA (15 mg/kg) or saline after the last pre-treatment, and the onset of the first generalized
seizure was recorded. After 24 hours and five days of KA induction, an open field test (OFT) and a
novel object recognition test (NORT) were performed before they were sacrificed. Results: THSN
pre-treatment of KA-induced status epilepticus groups demonstrated an increment in latencies to
the onset of the first generalized seizure and the number of line crossings in OFT, with a higher
recognition index of NORT compared to the untreated KA-induced status epilepticus group. Con-
clusion: THSN could have neuroprotective effects in ameliorating seizures, locomotor activity, and
memory function after KA-induced status epilepticus in male rats.

Key words: kainic acid, locomotion, memory, neuroprotection, rat's model, seizures, silver
nanoparticles, Tualang honey

INTRODUCTION
Seizures are a common neurological disorder asso-
ciated with epilepsy, which affects more than 2% of
the population worldwide1. Excitotoxic stimulation
of glutamate receptors results in an excessive, hyper-
excitable state of neurons, which can lead to status
epilepticus2. Seizures may have an impact on cel-
lular processes as well as synaptic plasticity, such as
long–term potentiation (LTP). LTP refers to persis-
tent changes in synaptic efficacy and plays a vital role
in cellular processes necessary for learning and mem-
ory 3. Repeated seizures have been shown to cause im-
pairment of LTP-associated molecular mechanisms
and saturation of synaptic responses4, potentially im-
pacting memory function5.
Several studies have shown that an animal model of
seizure induced by kainic acid (KA) administration
was associated with behavioral alteration and anx-
iety 6,7. These abnormalities in behavior could be
linked to lesions in the amygdala and hippocampus
(i.e., fear expression networks)8,9. Damage to these

networks could reduce anxiety or increase impulsive,
inadaptive behavior due to an incorrect interpretation
of threatening circumstances8.
KA, isolated and extracted from red algae (Digenea
simplex)10, is a potent analog of glutamate. KA has
30-fold neurotoxicity potential compared to gluta-
mate11 and iswidely used as a chemical neurotoxicant
to investigate the mechanism involved in excitotox-
icity in animal experimentation12,13. KA receptors,
which are a subtype of the ionotropic glutamate recep-
tor family, are highly expressed in numerous parts of
the brain, including the hippocampus14, which is cru-
cially involved in learning and memory processes15.
Over the past few decades, silver nanoparticles have
received significant attention due to their great stabil-
ity, high bioavailability, and ability to easily cross the
blood–brain barrier. In addition, they can function
as antimicrobial16, anti-inflammatory 17, and neuro-
protective18 agents. Recently, there has been emerg-
ing research interest in the plant-mediated green
synthesis of silver nanoparticles due to their cost-
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effectiveness, environment-friendliness, and low tox-
icity profile compared to their hazardous chemical-
mediated counterparts19. Few strategies have been
explored to enhance honey’s absorption and bioavail-
ability, including the development of silver nanopar-
ticles synthesized using Tualang honey (TH) formu-
lations20,21. In this study, we used Tualang honey–
mediated silver nanoparticles (THSN) to increase the
bioactivity of the substance in the rat’s brain.
Our previous work showed that nanoparticles derived
from THSN possess high antioxidant activity and fer-
ric/reducing antioxidant power, with an average size
of 22 nm, which most likely improves its bioavailabil-
ity in the body 21. However, we have not studied the
efficacy of THSN in vivo. Hence, the present research
aimed to explore the possible neuroprotective effects
of THSN in a KA-induced status epilepticus in vivo
rat model, looking specifically at seizure and locomo-
tor activity, as well as memory function following KA
administration.

METHODS
Animals
Male Sprague Dawley rats weighing between 200 and
250 g (8–10 weeks old) were acquired from the Ani-
mal Research and Service Centre (ARASC) at Univer-
siti Sains Malaysia (USM) Health Campus. The an-
imals were acclimatized for one week at a tempera-
ture of 25 ± 2 ◦C with a 12:12 hour light–dark cy-
cle and provided with food and water ad libitum. All
procedures were carried out in accordance with the
guidelines approved by the Animal Ethics Committee
of USM [USM/IACUC/2018/(111)(904)].

Preparation of THSN
TH was purchased from the Federal Agricultural
Marketing Authority (FAMA), Kelantan, Malaysia.
THSN was prepared via the green synthesis method.
The synthesis and characterization of THSN are re-
ported in our previous preliminary study 21. The
THSN was formulated in powder form and dissolved
in 0.5 mL of distilled water before each use.

Design of experimental groups
A total of 72 male rats were randomized into two ma-
jor groups (24 hours and five days), and each group
contained six subgroups (n = 6). Each subgroup was
pre-treated five times at 12 hours intervals:
Group 1: Control – Rats were pre-treated orally with
distilled water.
Group 2: THSN 10 mg – Rats were pre-treated orally
with THSN (10 mg/kg).

Group 3: THSN 50 mg – Rats were pre-treated orally
with THSN (50 mg/kg).
Group 4: KA alone – Rats were pre-treated orally with
distilled water.
Group 5: KA + THSN 10 mg – Rats were pre-treated
orally with THSN (10 mg/kg).
Group 6: KA + THSN 50 mg – Rats were pre-treated
orally with THSN (50 mg/kg).
The THSN dosages used in the present study were
based on earlier reports22,23. A recent study demon-
strated that a daily dosage of 10 mg/kg of silver
nanoparticles (low dose) ofAzadirachta indica extract
might be safer for rats24. Therefore, the current study
used THSN at 10 mg/kg (low dose) and 50 mg/kg
(high dose) to compare their effects on KA-induced
status epilepticus in rats.

KA administration and seizure develop-
ment
KA (15 mg/kg) or saline was injected subcutaneously
(s.c.) into the rats 30 minutes after the last oral treat-
ment of the respective groups. Following KA admin-
istration, each rat was placed in an individual cage,
and their seizures were observed for 3–4 hours. A
six-stage rating scale for seizure development in rats’
behavior was recorded as categorized by the previ-
ous study 25. To minimize mortality, diazepam (10
mg/kg; Atlantic Laboratories Corp. Ltd., Thailand)
was injected intraperitoneally 90 minutes after the
onset of the first generalized seizure (FGS) began26,
whereas animals in the control groups received an
equivalent amount of saline.

Open field test (OFT)
The OFT was performed to assess the behavioral
changes in rats’ locomotor activity, according to
Sairazi et al. (2017). OFT is widely used in animal
models of anxiety-like behavior6,7. The animals were
tested at 24 hours and five days post-KA induction.
Each rat was positioned at the center of 25 equally
sized squares of the OFT apparatus (40 cm height x
90 cm length x 90 cm width and surrounded by a
white paper wall). Each rat was free to explore the
area for five minutes, and the locomotor activity was
recorded using an overhead camera (placed 100 cm
above the box). After each trial, the equipment was
cleaned with 30% ethanol to prevent bias from the
smell of the previous animal. The locomotor activ-
ity of animals was evaluated based on the frequency
of line crossings in the OFT apparatus. The animals’
behavior was analyzed by an observer blinded to the
experimental groups.
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Figure1: Theobjects thathavebeenusedduringacquisitionphase (bothare familiarobjects) andretention
phase (familiar and novel objects). The objects varied in shape, colour, and made of plastics.

Novel object recognition test (NORT)
TheNORT was performed to evaluate the rats’ cogni-
tive and memory functions, according to Wang et al.
(2016)27. Each rat was placed in an empty open field
(40 cm height x 90 cm length x 90 cm width) with no
object for 10 minutes/day for two consecutive days.
The open field was used for the acquisition and reten-
tion phase. Two familiar objects (A1 and A2) were
placed in the field during the acquisition phase, and
each rat was permitted to explore them freely for five
minutes. Their behaviors were recorded using a video
camera (Sony, DCR-SX44E), and the time used to ex-
plore was documented. Exploration was described
as pointing the snout toward the object, sniffing, or
touching with the snout. The acquisition phase was
conducted before the KA was administered.
Subsequently, retention was tested 24 hours and five
days after the acquisition phase and KA administra-
tion. One of the objects used in the retention phase
was substituted by a different object (novel object),
and each rat was permitted to explore them for five

minutes. The objects, which varied in shape and color
and were made of plastic (Figure 1), were fixed on the
floor. The objects were cleaned with 30% ethanol be-
fore each test to ensure the absence of olfactory cues.
A familiarity index (time spent on object A1 or A2 /
total time exploring A1 and A2) was calculated dur-
ing the acquisition phase. A score of 0.5 indicates that
neither object was preferred. Additionally, the total
exploration time of the familiar and novel objects was
recorded for the retention phase, and the recognition
index was calculated (time spent on the novel object
/ total time exploring novel and familiar objects). A
recognition index of greater than 0.5 suggests a pref-
erence for the novel object.

Statistical analysis
IBM SPSS software (Version 26, Chicago, USA) was
used to analyze the results. The datasets were sub-
jected to normality and homogeneity of variance anal-
ysis using Levene’s test. A parametric test was used
to analyze data with a normal distribution and equal
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variance. One-way analysis of variance (ANOVA) fol-
lowed by Tukey’s post hoc test was used for multiple
pairwise comparisons28. All values were expressed as
mean ± standard error of the mean (SEM). The dif-
ferences were considered statistically significant at p
< 0.05.

RESULTS
Seizure activity and FGS onset
The KA administration (15 mg/kg body weight; s.c.)
resulted in an epilepticus seizure in all KA-treated
rats. The seizure most commonly began 1–4 hours af-
ter the KA injection. The progressive motor seizures
in all KA-treated rats began with staring spells dur-
ing which the animals appeared to be in motion ar-
rest. Subsequently, the animals exhibited wet dog
shakes that became progressively more frequent. The
animals then displayed hyperactive behavior that in-
cluded frequent head nodding, constant walking, and
chewing intervals. They then began to rear up on
their hind limbs, which progressed to frequent and
protracted rearing, followed by forelimb clonic jerks
and salivation (FGS stage). The rats then began to
fall or lose their equilibrium while rearing. These
rearing and falling episodes persisted until the rats
were injected intraperitoneally with diazepam (10
mg/kg) around 90 minutes after the FGS started. An-
imals in the control group (saline, s.c.) showed no
seizure activity and continued to behave normally,
such as walking, sniffing, grooming, and exploring.
The stages of the rating scale for seizure development
were recorded (Table 1).
The KA-treated rats began to show the first general-
ized behavior seizure (stage 4) within 60 – 90 min-
utes. All animals in the pre-treatment showed signif-
icant differences in the onset of the FGS [F (2,33) =
18.905, p < 0.01; p = 0.000] in the KA + THSN 10
mg and KA + THSN 50 mg groups compared to the
KA alone group. These results suggest that the pre-
treatment with THSN might have anticonvulsant ac-
tivity by showing longer latencies to the FGS. All KA-
treated rats in pre-treatment groups showed no signif-
icant differences between each other (p > 0.05; Fig-
ure 2).

Number of line crossings in OFT
The number of line crossings during OFT was signif-
icantly different between the groups at 24 hours post-
KA induction [F (5, 30) = 6.173, p < 0.01; p = 0.000;
Table 2]. The post hoc test revealed that the num-
ber of line crossings was reduced significantly (p <
0.05) for the KA alone group compared to the con-
trol, THSN 10 mg, and THSN 50 mg groups. This

finding indicated a decrease in animal locomotor ac-
tivities 24 hours post-KA administration. At five days
post-KA induction, all KA-treated rat groups, except
for the KA + THSN 50 mg group, showed a signifi-
cantly higher number of line crossings compared to
the control group [F (5, 30) = 11.699, p < 0.01; p
= 0.000; Table 2]. Contrary to the 24 hours post-
KA induction results, the rats’ locomotor activities in-
creased five days after KA administration compared
to the control group.

Recognitionmemory performance in NORT
In the acquisition phase of the NORT, no significant
differences existed (p > 0.05) in the familiarity index
between all groups at both times (Figure 3). This re-
sult indicated that all rats had no preference for ei-
ther left or right objects. Interestingly, in the retention
phase among the 24-hours subgroups, the recognition
index for the novel object in the KA alone group was
significantly lower (p < 0.05) compared to the con-
trol, THSN 10 mg, and THSN 50 mg groups. The
recognition index in the KA + THSN 10 mg and KA
+ THSN 50 mg groups was also significantly higher
(p < 0.05) than that of the KA alone group (Figure
4). In the five-days subgroups, the recognition index
for the novel object in the KA alone group was sig-
nificantly lower (p < 0.05) compared to the control
and THSN 10 mg groups, whereas the KA + THSN
10 mg and KA + THSN 50 mg groups displayed a sig-
nificantly higher recognition index (p < 0.05) com-
pared to the KA alone group. A higher recognition
index represents a longer time spent with the rats’
snout directed to the novel object. The differences
between control, pre-treatment, and KA-treated rats
with pre-treatments were not significant (p > 0.05) at
both times (Figure 4).

DISCUSSION
In the current study, the administration of KA (15
mg/kg; s.c.) was demonstrated to induce seizures in
rats, possibly via suppressing gamma-aminobutyric
acid (GABA) and enhancing glutamate hyperactiv-
ity 29. KA was selected because it is a potent neuro-
toxic analog of excitotoxic glutamate and an agonist of
the kainate subtype of ionotropic glutamate receptors,
which causes neuronal depolarization and seizures,
specifically targeting the hippocampus12,30. In addi-
tion, earlier studies reported that administering KA
(15 mg/kg) to rats caused severe behavioral disorders
and cognitive impairment, elevated glutamate levels,
microglial activation, and increased neuronal loss in
the brain26,31.
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Figure 2: The onset of the FGS among KA induction groups. * p < 0.05 compared to KA alone. Data were
expressed as mean± SEM.

Figure 3: The familiarity index during the acquisition phase of NORT for all the groups at different time
points. Data were expressed as mean± SEM.
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Table 1: Stages of rating scale for seizure development

Stage Description

1 Staring stage – Animals crouches on all limbs, immobilized, staring, and appearing vigilant but not
responding to any stimuli (5 – 15 minutes after KA administration).

2 Wet dog shakes stage – Animals develop behavioural automatisms (e.g. wet dog shakes), which later
intensify.

3 Hyperactive stage – Animals display hyperactivity, including frequent forelimb movement, repeated
head nodding, increasing intervals of walking and chewing.

4 Rearing stage – Onset of the FGS. Animals rear up on a hind limb, accompanied by salivation and
forelimb clonic jerks. Then, animals develop more frequent and prolonged rearing with increased
forelimb clonic jerks and salivation (1 – 2 hours after KA administration).

5 Rearing and falling stage – Animals lose balance while rearing and display frequent forelimb clonic
jerks and salivation.

6 Jumping stage – Animals display jumping, circling, rolling, intense agitation, and wild running.
These symptoms are often accompanied by death.

Table 2: The number of line crossings in the OFT

Groups Number of line crossing

24 h 5 days

Control 81.17± 11.83 95.17± 8.25

THSN 10 mg 73.33± 11.15 114.83± 5.17

THSN 50 mg 67.50± 8.14 110.50± 11.98

KA alone 6.83± 4.39a,b,c 175.50± 20.20a,b

KA + THSN 10 mg 36.83± 13.04 190.75± 19.50a,b

KA + THSN 50 mg 34.83± 16.58 123.17± 16.22

Significant differences were determined by a parametric test; one-way
ANOVA followed by the Tukey post hoc test with p < 0.05 indicated sta-
tistical difference. a p < 0.05 versus control group; b p < 0.05 versus THSN
10 mg group; c p < 0.05 versus THSN 50 mg group. The results were ex-
pressed as mean± SEM.

The current study showed that all KA-treated rats
pre-treated with THSN (10 mg/kg and 50 mg/kg) in
both the 24-hours and five-days subgroups had longer
latencies to the onset of the FGS compared to the
KA alone group, suggesting a potential anticonvul-
sant property of THSN. The anticonvulsant effect of
THSN could be explained due to its constituents that
may be involved in this action by the binding inhi-
bition between KA and glutamate receptors. TH, a
reducing agent used to synthesize the silver nanopar-
ticles, contains various chemical compounds such as
acids, aldehydes, alcohol, ketones, terpenes, hydro-
carbons, and furan derivatives32, as well as phyto-
chemical compounds33. THSN has been reported
to contain alcohols, phenols, amides, carboxylate
ions, and protein and exhibit high antioxidant activ-
ity 21. The presence of antioxidant components (e.g.,

flavonoids) may be responsible for the anticonvulsant
properties exhibited by silver nanoparticles34 by act-
ing as benzodiazepine-like molecules in the central
nervous system and altering GABA-generated chlo-
ride currents in a seizure model35,36. Previous stud-
ies have also shown that silver nanoparticles using a
similar method of green synthesis demonstrated anti-
epileptic properties in a rat model37,38. Additionally,
other nanoparticles of polyphenol from the tea plant
(epigallocatechine-3-gallate) possess an anticonvul-
sant activity, evidenced by a reduction in the num-
ber of epileptic episodes and intensity of the seizure
pattern39. These positive results can be attributed to
its high antioxidant capacity, high bioavailability, and
stability 40–42.
In addition to seizures, the KA administration also in-
duced some alterations in locomotor activity 43. The
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Figure 4: The recognition index during the retention phase of NORT for all the groups at different time
points. a p < 0.01 compared to KA alone; b p < 0.05 compared to KA alone; c p < 0.001 compared to KA alone. Data
were expressed as mean± SEM.

OFT results demonstrated that KA administration in-
duced anxiety in rats after 24 hours. According to
Chan et al. (2017), the lower locomotor activity in the
open-field arena indicates a higher level of anxiety-
like behavior44. The imbalance between excitatory
(glutamate) and inhibitory (GABA) synaptic activities
in the brain might be the main contributor to mod-
ulating anxiety responses45,46. The current findings
demonstrated that THSN improved the locomotor ac-
tivity in the OFT, suggesting potential anxiolytic ac-
tion and antidepressant properties. Similarly, a previ-
ous study showed that treatment with silver nanopar-
ticles at a dose of 10 mg/kg exhibited an anxiolytic ef-
fect in mice47. Another study also reported that an-
imals treated with silver nanoparticles became more
active and showed increased locomotor activity in the
OFT48. The present findings revealed that THSN in-
creased the rats’ locomotor activity with time. How-
ever, the pre-treatment of THSN failed to produce
a significant reduction in movement in animals five
days post-KA induction.
Besides OFT, NORT was performed at different inter-
vals (24 hours and five days) after KA administration
to assess several aspects of cognitive function, specif-
ically memory and learning49. This test is a non-
spatial memory task that stimulates an animal’s pref-

erence for novelty as well as their innate exploratory
behavior, which confers the ability to remember50.
During the retention phase, the decrease in recog-
nition index following KA induction was improved
in most of the pre-treatment groups, where the ani-
mals that recalled the familiar object spent more time
examining the novel object because they have an in-
nate preference for novelty. Additionally, a study by
Ramshini et al. (2017) discovered that silver nanopar-
ticles improved spatial learning and memory in rats
by inhibiting Aβ amyloid fibril–induced neurotoxi-
city 51. High levels of Aβ make neurons more vul-
nerable to excitotoxic events caused by seizures, and
reducing Aβ by nanoparticles can protect neurons
from Aβ -related toxicity 52,53. Additionally, a previ-
ous study reported that administering silver nanopar-
ticles derived from green synthesis was effective in
preventing and reducing deficits in recognition and
spatial memory in a neurodegenerative rat model by
inhibiting excess ROS formation and preserving mi-
tochondrial activation in generating ATP54. Another
finding reported that silver nanoparticle conjugate
could recover spatial learning and enhance memory
in other rat models55.
The disparity between the current and prior findings
is most likely due to differences in experimental set-
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tings such as treatment route and type of animal used
(strain and species). Further investigations exam-
ining the morphological and molecular level of the
mechanism will better elucidate the protective effects
of THSN against KA-induced status epilepticus and
neurodegeneration in rats.

CONCLUSIONS
The present study suggests that THSN improved
seizures, locomotor activity, and memory function
following KA administration. This can be seen from
the ability of THSN to increase the latency to seizure
and the number of line crossings, as well as the higher
recognition index. Further study into the cytotoxi-
city mechanisms of THSN is warranted to widen its
nanomedical uses in diagnostics, therapeutics, and
pharmaceutics.

ABBREVIATIONS
ANOVA: Analysis of variance, FGS: First generalised
seizure, GABA: Gamma-aminobutyric acid, KA:
Kainic acid, LTP: Long-term potentiation, NORT:
Novel object recognition index,OFT: Open field test,
S.C.: Subcutaneously, SEM: Standard error mean,
SPSS: Statistical package for social sciences, TH: Tu-
alang honey, THSN: Tualang honey silver nanoparti-
cles
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