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ABSTRACT
Metabolismdescribes the cellular bioenergetic pathways that provide energy andmacromolecules
for protein, lipid, and nucleic acid syntheses. In cancer, malignant cells alter the metabolic path-
ways to acquire nutrients needed for proliferation and survival. The variousmetabolicmodifications
exhibited by cancer cells include aerobic glycolysis, decreased oxidative phosphorylation, and ele-
vatedproductionof biosynthetic intermediates. To support the increasingneed for thesemetabolic
modifications, cancer cells increase the expressions of plasma membrane transporters and en-
zymes involved in the metabolic pathways. Additionally, some cancer cells escape chemother-
apy treatment by reprogramming theirmetabolic activities. This chemotherapy-induced resistance
mechanism allows malignant cells to promote their survival as well as to provide defense against
cell damage by engaging various metabolic shunt pathways. Therefore, understanding metabolic
reprogramming in cancer may provide useful information that can further be exploited to strate-
gize potential treatment interventions and subsequently foster better outcomes among patients
with cancer.
Key words: Cancer metabolic pathway, glycolysis, OXPHOS, TCA cycle, tumour bioenergetics,
Warburg effect

INTRODUCTION
Some of the characteristics that distinguish cancer
cells from normal cells are high proliferation activ-
ity, self-renewal property, and cell death evasion1,2.
As cells evolve toward neoplastic characteristics, they
modify nutrient acquisition mechanisms as well as
rewire bioenergetic pathways and undergo metabolic
changes.
Dysregulated metabolism is one of the seven hall-
marks of cancer and is rooted back to the study
by Otto Warburg in 19561–3. In the study, he ob-
served an abnormal metabolic phenomenon exhib-
ited by cancer cells, in which tumors utilized glycol-
ysis to produce energy in the presence of oxygen1.
This observation opposes the normal energy produc-
tion in normal cells whereby the cells prefer to em-
ploy oxidative phosphorylation (OXPHOS) over gly-
colysis when oxygen is available. Since then, research
on cancer metabolism has been growing steadily with
less emphasis given on the area. However, in the last
decade, the field has emerged as an area of interest
among scientists and clinicians to unravel the link be-
tween dysregulated metabolic activity and cancer2.
For instance, studies have found that during trans-
formation, cancer cells require continuous bioener-
getic reactions and copious amounts of ATPs to guar-
antee a sufficient supply of energy 4–6. Accordingly,
cancer cells adopt numerous metabolic strategies to

support the need for energy, such as higher uptake of
nutrients, execution of different shunt pathways, and
overexpression of severalmetabolic enzymes and pro-
teins7–10.
More recently, the roles of dysregulated metabolism
in cancer have also been speculated to underlie the
disease resistance to therapy. Emerging evidence has
pointed towardmetabolic reprogramming in resistant
cancer cells when they are exposed to selective phar-
macological ormolecular inhibitions11–13. For exam-
ple, a portion of surviving cancer cells treated with a
standard chemotherapy agent shunted theirmetabolic
activities toward building of membrane skeletons and
nucleotide blocks and remained dormant for a certain
period12,14,15. This phase of dormancy prepares the
cells to emerge as resistant clones and cause relapse in
the future14. Therefore, this review aimed to discuss
the fundamental role of metabolism in cancer and
present recent findings on the rewiring of metabolic
activity when tumor cells evolve toward resistancy.
Targeting metabolism by inhibiting known metabolic
pathways and issues surrounding this approach are
also outlined in this review.

Glycolysis
Glycolysis is the main catabolic pathway that breaks
down glucose molecules into pyruvate following a se-
ries of enzymatic reactions. A complete glycolysis re-
action processes 1mole of glucose into 2moles of ATP
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and 2 moles of NADH. In the first step of glycolysis,
glucose is transported into the cytoplasm by a glu-
cose transporter (GLUT) and is then phosphorylated
by hexokinase, producing a negatively charged glu-
cose 6-phosphate (Figure 1 A). The negative charge
prevents diffusion of the molecule through the cell
membrane, thus trapping the molecule within the cy-
toplasm. Along the glycolysis pathway, phosphofruc-
tokinase 1 (PFK1), a rate-limiting enzyme, catalyzes
the conversion of fructose 6-phosphate to fructose-
1,6-biphosphate. In this process, ATP is consumed,
making this reaction a crucial and irreversible step in
the glycolysis pathway. The final product of glycoly-
sis is pyruvate, a three-carbon molecule that serves as
a carbon precursor for subsequent bioenergetic pro-
cesses. Depending on the physiological condition,
pyruvate has two fates: either to enter the mitochon-
dria for the tricarboxylic acid (TCA) cycle and subse-
quent OXPHOS reaction or to be converted into lac-
tate by lactate dehydrogenase16.
When the oxygen is less favorable, cells opt to convert
pyruvate into lactate, which is then transported out
to the extracellular matrix by a lactate transporter16.
This process is termed aerobic glycolysis, which gen-
erates 2 ATPs per glucose molecule.

TCA and OXPHOS
In the presence of oxygen, pyruvate enters the mi-
tochondria for complete catabolic and anabolic reac-
tions in the TCA cycle. In the mitochondrial matrix,
pyruvate is oxidized by coenzymeA (CoA) to produce
acetyl-CoA.Acetyl-CoA then reactswith oxaloacetate
to produce citrate, which later undergoes eight enzy-
matic reactions in the TCA cycle. The final product
of the TCA cycle is oxaloacetate, which consequently
feeds back into the cycle (Figure 1A). A complete
TCA cycle produces a number of TCA cycle interme-
diates that serve as precursors for biosynthetic pro-
cesses. The TCA cycle also produces reducing agents,
NADH and FADH2, which are needed for electron
transfer in themitochondrial respiratory chain. In the
presence of oxygen, this electron transport chain fun-
nels electrons through the four complexes (I to IV) in
the innermitochondrial membrane to generate 32–34
ATPs per glucose molecule, making it an efficient en-
ergy production process (i.e., OXPHOS)17.
The TCA cycle is also fueled by glutamine-derived
metabolites (Figure 1 B). Glutamine provides both
carbon and nitrogen precursors for cellular bioen-
ergetics and biosynthesis. It is transported into the
cells by glutamine transporters and transformed into
glutamate by glutaminase (GLS), which is later con-
verted to alpha-ketoglutarate and feeds back into the

TCA cycle. Glutamine metabolism has been shown
to maintain TCA cycle activity in cells with impaired
mitochondria, thus providing crucial support for cell
survival18.

Pentose Phosphate Pathway (PPP) and Ser-
ine Synthesis Pathway (SSP)
The PPP and SSP are two metabolic pathways paral-
lel to glycolysis (Figure 1 A).The PPP (also known as
the phosphogluconate or hexose pathway) produces
the sugar–phosphate backbone for nucleic acid syn-
thesis and NADPH for fatty acid synthesis and main-
tenance of reduction–oxidation under stress condi-
tions19. Meanwhile, the SSP produces serine, which
is the source for biosynthesis of nonessential amino
acids, glycine and cysteine. Glycine acts as a precursor
for the production of glutathione (GSH), an antioxi-
dant that provides defense from oxidative stress dam-
age20. Serine provides a backbone for sphingosine in
the synthesis of membrane lipids. Notably, PPP and
SSP dysregulations have been reported to be involved
in several types of cancer, such as breast and blood
cancers8,21.

Lipid Metabolism
Lipid metabolism is the process of synthesizing, stor-
ing, and degrading lipids (triglycerides, cholesterol,
fatty acids, and phospholipids) to produce energy or
structural components of cell membranes. In lipid
catabolism, triglycerides are broken down into fatty
acids and glycerol (Figure 1C). In the cytosol, glycerol
is transformed to glyceraldehyde 3-phosphate, an in-
termediate in the glycolysis pathway that can further
be oxidized to generate energy. In the mitochondria,
beta-oxidation of fatty acid produces acetyl-CoA that
feeds into the TCA cycle. Membrane lipid biosynthe-
sis involves the synthesis of themembrane backbones,
sphingosine or glycerol, followed by the addition of
fatty acids to generate phosphatidic acid. Phospha-
tidic acid is modified by the addition of hydrophilic
head groups to the membrane skeleton, making a
complete structure of membrane lipids. Recently,
lipid reprogramming has been shown to be respon-
sible for the resistance mechanism seen in blood and
solid tumors that have been treated with chemother-
apeutic agents14,22.

DYSREGULATEDMETABOLISM IN
CANCER
In cancer, the transformed cells undergo a complex
metabolic reprogramming activity to promote their
increased need for energy. This alteration is man-
ifested by an increased uptake of nutrients, such as
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glucose and glutamine, a high rate of glycolysis re-
sulting in increased extracellular acidification, and
a higher expression of metabolic enzymes and pro-
teins5,15,23,24.
An increased uptake of glucose is one of the charac-
teristics of dysregulated metabolism in cancer7,9,23.
In a study of breast cancer cells, upregulated glu-
cose intake and increased production of both pyru-
vate and lactate were observed in an aggressive tumor
model23. Furthermore, inhibition of the glycolytic
function with glycolytic inhibitor 2-deoxyglucose di-
minished cell growth, whereas inhibition of the mito-
chondrial function with 3-nitropropionic acid, an in-
hibitor of the TCA cycle, did not reduce the invasive-
ness; these findings indicate the reliance of invasive
characteristics on glycolysis but not on the mitochon-
drial energetic pathway 23.
A high intake of glucose is supported by an increased
expression of GLUTs and is linked to the onco-
genic role of the transcription factor, NF-KB25–27.
Among the 14 homologous families of GLUT pro-
teins, GLUT1 and GLUT3 have been predominantly
reported to be implicated in many types of can-
cer, such as breast cancer, colorectal carcinoma,
leukemia, and glioblastoma7,9,26–28. High expres-
sions of GLUT1 and GLUT3 are also associated with
poor clinical outcomes in patients with colorectal car-
cinoma and glioblastoma7,9.
The rate of glycolysis is increased in many types of
cancer owing to overexpression of PFK129–32. PFK1
has three isoforms: PFK1 platelet (PFKP), PFK1mus-
cle, and PFK1 liver, which are differentially expressed
in different organs and tissues33,34. However, PFKP
is predominantly dysregulated in many types of can-
cer, including lung, breast, liver, and kidney can-
cers21,30–32,35. In a PTEN loss brain tumor model,
AKT phosphorylated and stabilized PFKP and sub-
sequently promoted glycolysis and tumor progres-
sion36. Furthermore, PFKP was reported to be in-
volved in epithelial–mesenchymal transition in breast
cancer cells, and its overexpression is a poor prognos-
tic factor for patients with breast cancer with BRCA1
deficiency 21,37.
PKM2 is another glycolytic enzyme that functions
at the end of the glycolytic pathway and is overex-
pressed in many types of cancer that exhibit a high
glycolytic activity 10,38. It converts phosphoenolpyru-
vate to produce pyruvate and ATP, which gives ad-
vantage to tumor cells that have a higher expression
of this enzyme, such as pancreatic cancer cells10. In-
triguingly, PKM2 is translocated to the plasma mem-
brane and provides exclusive ATP supply for ATP-
dependent calcium pump, thus preventing cytoplas-
mic calcium overload and subsequent cell death10.

Dysregulated PKM2 is also reported in cells with a
compromisedmitochondrial function, which hinders
the glycolytic flux from entering the TCA cycle39.
Consequently, a high rate of glycolysis results in the
accumulation of extracellular lactate, making the tu-
mormicroenvironment acidic and optimal for metas-
tasis, vascularization, and resistance40. For example,
an acidic microenvironment poses a growth advan-
tage for aggressive colon and breast tumors in both in
vitro and in vivo studies17,40. A low-pH environment
is also associated with drug resistance and poor drug
efficacy as exhibited by acid-adapted colon carcinoma
cells13. Correspondingly, cancer cells require adap-
tation to maintain a low extracellular pH. Thus, can-
cer cells increase the expression of various membrane
transporters, including sodium–hydrogen exchanger-
1 and monocarboxylate transporters (MCTs), which
are directly linked to tumors with high metabolic
rates, such as cervix squamous cell carcinoma and B-
cell lymphoma40–42.
Cancer cells also rely on the PPP and SSP as alterna-
tives for glycolysis and OXPHOS. For example, T-cell
acute lymphoblastic leukemia cells suppress glycolysis
and shift the glycolysis intermediates toward the PPP
and SSP, both of which are important for providing
skeletons for tumor growth as well as for protecting
against oxidative damage8. Interestingly, glycolysis
is suppressed owing to the phosphorylation of PFKP
and PKM2 by cyclin D3–CDK6 kinase, a core com-
plex in the cell cycle machinery 8. The inhibition of
these glycolytic enzymes results in an increased pro-
duction of NADPH and GSH8.
Additionally, an increased glutamine uptake has been
observed in many types of cancer4,43–45. In the study
by Yoo et al. (2020), an increased uptake of glu-
tamine through glutamine-supported OXPHOS sup-
plied the ATP demand of the highly proliferative pan-
creatic cancer cells43. A high glutamine level also in-
creases the cellular GSH level, which suppresses the
production of reactive oxygen species (ROS) and pro-
tects cells from chemotherapy damage11,21,43. Dys-
regulated glutamine metabolism is associated with
an increased expression of oncogenes, such as c-
Myc4. c-Myc induces the overexpression of several
genes in the glutamine metabolism pathway, includ-
ing GLS I and phosphoribosyl pyrophosphate ami-
dotransferase, and consequently mediates the malig-
nant progression of small-cell lung cancer4,29. A
high level of glutamine also increases the cellular GSH
level, which minimizes the damage caused by ROS
and leads to chemotherapy drug resistance in both
cancer cell lines and patient samples11,21,43.
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Metabolic Rewiring Under Selective Pres-
sure
Many anti-cancer agents target cells in the prolifer-
ating stage that are dependent on glycolysis11,12,46;
however, recent evidence shows that surviving can-
cer cells escape treatment by shifting their metabolic
activities toward other shunt pathways, such as OX-
PHOS, the PPP, and the SSP11,12,14,47. These cells re-
main dormant for a certain period and potentially rise
and cause relapse in the future12,14,47.
Notably, in their studies on acute myeloid leukemia
(AML), Jones and colleagues have identified
glycolytic-dependent treatment-sensitive and
OXPHOS-dependent treatment-resistant leukemia
cells11. Interestingly, the OXPHOS-dependent
cells did not rely on glucose as the source of nutri-
ents; instead, they were dependent on amino acid
metabolism11. Treatment-resistant cells can also dys-
regulate metabolism toward lipid biosynthesis14,22.
For example, a multi-omics analysis revealed an
upregulation of fatty acid biosynthesis accompanied
with a downregulation of TCA and amino acid
in EZH2 inhibitor-treated cells22. Additionally,
invasive breast cancer cells can also shift toward the
PPP and SSP when glycolysis is suppressed8,21.
The mechanism of how cancer cells reprogram their
metabolic activity to acquire resistance is thus far
poorly understood. Some studies have suggested a
compensatory energy acquisition associatedwith dys-
regulated expressions of oncogenes in resistant sub-
clones, such as RAS and MAPK12,14,44,48. For exam-
ple, an RNA-seq analysis on samples from relapsed
or resistant AML cases revealed an enrichment of the
intrinsic RAS expression in resistant subclones12,14.
RAS can induce mitochondrial fusion that further el-
evatesOXPHOS activity 39,49. Furthermore, when the
glycolysis pathway is inhibited, cancer cells direct the
glycolytic flux toward the PPP, thereby increasing the
NADPH level21. NADPH is essential not only for
macromolecule synthesis in the growing phase of the
cell but also for protecting cells from oxidative dam-
age. In the presence of NADPH, GSH reductase con-
verts oxidized GSH to reduce the GSH level, which
protects cancer cells from oxidative damage caused by
ROS. Notably, low levels of ROS have been linked to
the stemness properties of resistant cancer cells, ex-
plaining the protective mechanism executed by resis-
tant cells11,21.
Furthermore, the metabolic shift from glycolysis to-
ward lipid metabolism under anti-cancer therapy is
linked to cell cycle reprogramming as well as global
methylation status modification14,22,50. For example,

FLT3-mutated AML cells with an altered metabolism
escaped the initial chemotherapy-induced G0G1 cell
cycle arrest14. In the evolution toward resistancy,
sphingolipid or phospholipid metabolism was en-
riched in surviving cells accompanied by an expan-
sion of NRAS mutation and a more prominent AU-
RKB signaling that drove the cells out from dor-
mancy to become highly proliferative14. Another
study crosslinked transcriptomic and metabolomic
data of solid tumor samples that have been treated
with GSK126, a selective inhibitor of EZH2 methyl-
transferase22. The analysis revealed that epige-
netic modifications were implicated in the treatment-
insensitive samples, in which a global reduction of the
H3K27me3 level was observed; this thereby increased
the expression of target genes in lipid biosynthesis,
such as SCD1 and ELOVL222.

TARGETINGMETABOLISM
The class of drugs resembling the structure of nu-
cleotide metabolites but differing enough to inhibit
the metabolic activity is termed antimetabolites. The
development of antimetabolites originated from the
success of aminopterin used in clinical trials to
treat childhood leukemia51,52. The discovery of
aminopterin led to the development of methotrex-
ate and pemetrexed, two folate analogs that inhibit
the de novo synthesis of nucleotide53. Methotrexate
is used in childhood acute lymphoblastic leukemia
chemotherapy treatment, which has been reported
to yield a cure rate significantly higher than 80% in
a phase III clinical study 54. Another synthetic nu-
cleotide used in the treatment of gastrointestinal can-
cer is 5-fluorouracil (5-FU), an analog of pyrimi-
dine53. 5-FU inhibits the formation of thymidine nu-
cleotides during DNA synthesis. Conversely, purine
analogs, 6-mercaptopurine and 6-thioguanine, ob-
struct the synthesis of purine53. Gemcitabine and cy-
tarabine are nucleoside analogs competitively incor-
porated into replicating DNA internucleoside, thus
inhibiting nucleotide chain elongation; they have
been used extensively in treating leukemia55,56.
Recently, efforts have been made to target the
metabolic enzymes or proteins that are differentially
expressed in cancer. For example, STF-31 was devel-
oped to inhibit GLUT1 activity; however, this com-
pound also inhibits nicotinamide phosphoribosyl-
transferase, an enzyme involved in NADH biosynthe-
sis57. Another inhibitor of GLUT is Glutor, which
targets GLUT1, GLUT2, and GLUT358 . However,
Glutor alone is not enough to completely eradicate
cancer cells. The combination of Glutor and GLS in-
hibitor at low concentrations synergistically inhibited
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HCT116 cell growth, whichmay offer a promising ap-
proach for dual inhibition58. Furthermore, a potent
MCT1 inhibitor, AZD3965, has undergone phase 1
clinical study in patients with advanced-stage solid tu-
mors59. The results indicate a promising therapeu-
tic value in patients with a high MCT1 expression,
and further clinical trials for this compound are on-
going59. A glutamine transport antagonist was also
developed to inhibit the uptake of glutamine through
the specific glutamine transporter, ASCT260,61. The
compound known asV-9302mimics glutamine and is
able to hamper cell proliferation and induce apoptosis
in vitro in more than half of various cell lines used in
the study 60. However, an in vivo study showed a non-
target effect of V-9302 on other transporters, which
impedes further exploration of this compound as a
potential therapeutic agent61. A comprehensive re-
view of the drugs used to target metabolism in cancer
can be found in this study 53.
Nevertheless, specificity remains one of the issues in
targeting dysregulated metabolism in cancer. Fur-
thermore, single-drug treatment is usually associated
with high toxicity, as high concentrations of drug
used during chemotherapy induction further increase
the risks of long-term side effects in children and
worse clinical outcomes in adult patients12. Single-
drug treatment can also cause residual disease, in-
dicating resistance and potential relapse14,50. Thus,
combinations of standard chemotherapy agents with
novel compound or drug repurposing approaches
may help beneficial therapeutic strategies to overcome
these issues, as indicated in many studies10–12,14.

CONCLUSION
The global landscape of cancer metabolism has
evolved from a simple model of the Warburg effect
to more complex models of tumor metabolism. Cur-
rently, researchers are exploringmetabolic targets and
pathways used by cancer cells during tumor evolu-
tion, invasion, and resistance that can be exploited
as biomarkers for diagnostic purposes. More impor-
tantly, the discovery can be manipulated to develop
novel inhibitors for targeted therapy that may have
the potential to synergize with chemotherapy agents
currently used in clinics. Not only will this approach
eradicate the metabolic flexible- and resistant-cancer
cells but also address the toxicity issue of single-drug
treatment in cancer therapy. Consequently, this strat-
egy is hoped to foster a better clinical outcome among
patients diagnosed with cancer and further improve
the quality of life among survivors.

ABBREVIATIONS
ATP: Adenosine triphosphate, CDK6: Cyclin-
dependent kinase 6, ETC: Electron transport chain,
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HK: Hexokinase, LDH: Lactate dehydrogenase,
MCT: Monocarboxylate transporter, NADH:
Nicotinamide adenine dinucleotide, NADPH:
Nicotinamide adenine dinucleotide phosphate,
NHE-1: Sodium-hydrogen exchanger, OXPHOS:
Oxidative phosphorylation, PFK1: Phosphofruc-
tokinase 1, PPAT: Phosphoribosyl pyrophosphate
amidotransferase, PPP: Pentose phosphate pathway,
ROS: Reactive oxygen species, SSP: Serine synthesis,
TCA: Tricarboxylic acid
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