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ABSTRACT
Triclosan (TCS) is present in toothpaste and other cosmetic products as an antibacterial and anti-
fungal agent. This manuscript highlights that TCS is a potential oxidative stress-causing agent, an
estrogenic, mutagenic, cancer-causing agent, and genotoxic agent present in cosmetic products.
This study also summarizes the therapeutic approach to overcome all of the harmful effects. It is a
popular current topic, and a new research study is needed to find a new alternative as an antibac-
terial and anti-fungal agent instead of TCS. TCS causes oxidative stress when the dynamic balance
in synthesizing and removing reactive oxygen species (ROS) within typical physiological circum-
stances is disturbed. The antioxidant defence system includes both enzymatic and non-enzymatic
antioxidants produced by the organism to tackle the harmful effects of ROS. TCSs have estrogenic,
proliferative, and apoptotic properties due to research on cell fate. The mutagenic potential of TCS
has been examined using in vitro and in vivo research in prokaryotic, eukaryotic systems, andmam-
malian cells. It also induces carcinogenic, estrogenic, and mutagenic effects. TCS's therapeutic
effects, especially against inflammatory skin conditions, have been demonstrated by many materi-
als gathered from in vitro and in vivo experiments. The new findings suggest that TCS, a commonly
used cosmetic product, may cause cancer, as shown by animal and human models and clinical
trials. TCS is not effectively regulated, as evidenced by its presence in various environmental me-
dia, human bodies, and animals. Its irresponsible usage and disposal may endanger humans and
wildlife. TCS has been found to damage a wide variety of cells in cell-based investigations. TCS's
exact function in the environmental selection of antibiotic and multidrug resistance genes is still
unclear. Comprehensive evaluations of these domains, especially to derive serious human health
risk inferences from TCS outcomes, may help future research and legislation to better serve the
public's health.
Key words: Antibacterial, Anti-fungal, Cosmetic, Estrogen, Genetic, Oxidative Stress, Toxicity,
Triclosan, Tumor

INTRODUCTION
Toothpaste is the most widely used cosmetic prod-
uct for teeth protection in modern societies. There
are many chemicals and natural products that act as
an antibacterial, antifungal, and protectant for teeth.
However, its constituents include Triclosan (TCS),
an antibacterial and antifungal agent to protect teeth
fromdeleterious effects. TCS is also used in other cos-
metic products such as soaps, detergents, toys, and
surgical cleaning treatments1,2. TCS is widely re-
garded as a broad-spectrum biocide that targets bac-
terial membranes, and cellular resistance is uncom-
mon if TCS has a unique mechanism of action. Since
the TCS inhibits Escherichia coli (E. coli) enoyl reduc-
tase (FabI), the bisphenol has also been found to in-
hibit the enzyme from different bacteria such as Pseu-
domonas aeruginosa (P. aeruginosa) and Staphylococ-
cus aureus (S. aureus). TCS’s inhibitory action on
enoyl reductase was discovered, FabK in P. aerug-

inosa and Staphylococcus pneumoniae (S. pneumo-
niae), fabL in Bacillus subtilis (B. subtilis), InhA in
Mycobacterium smegmatis (M. smegmatis), and My-
cobacterium tuberculosis (M. tuberculosis) have all
been identified3,4. FabK and FabL are TCS resistant,
whereas InhA is not. Similar inhibition of TCS fatty
acid production was seen in higher lifeforms, includ-
ing Plasmodium falciparum P. falciparum), which
causes malaria, and Toxoplasma gondii (T. gondii)3,5.
TCS is easily photodegraded in the environment, de-
spite its high chemical volatility and resistance to high
and low pH. In the laboratory, they found eight pho-
tochemical by-products. Under various irradiation
wavelengths, Latch et al.,6 reported TCS photocon-
version to 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD)
with up to 12% output at pH > 8. The yield of 2,8-
DCDD under laboratory settings (pure water) and
river water treated with TCS was compared7. Ac-
cording to findings comparable to lab and field set-
tings, TCS can be converted to 2,8-DCDD in sunlight
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irradiated water sources. According to Son et al.,8,
radicals that enhance transitional dioxin degradation
control TCS breakdown by titanium dioxide photo-
catalysis. Oxidative damage to lipid membrane, pro-
tein, and nucleic acid may result from insufficient re-
active oxygen species (ROS) scavenging9. Reduced
glutathione (GSH), catalase (CAT), glutathione per-
oxidase (GPx), superoxide dismutase (SOD), and glu-
tathione reductase (GR) are examples of enzymatic
and non-enzymatic antioxidants that defend against
the harmful consequences of ROS. The peroxidation
of cell membrane lipids may occur when organisms
are exposed to ROS-producing contaminants. Mal-
ondialdehyde (MDA) is a biomarker for assessing cell
membrane destruction that is produced as a result of
membrane lipid peroxidation (LPO)10. After sub-
chronic TCS treatment, the antioxidantmechanismof
the liver may be unable to remove ROS produced by
TCS, which might explain the elevated MDA levels.
Antioxidant compounds are free radical scavengers
because they prevent or delay-free the radical oxida-
tion of substrates, resulting in significant LPO protec-
tion in biological systems11. Phenolic and polyphe-
nolic chemicals are the most common natural antiox-
idants found in plants, foods, and beverages. The total
antioxidant capacity (TAC) was calculated by reduc-
ing Mo (VI) to Mo (V) in the extract and forming a
green phosphate/Mo(V) complex at an acid pH12. It
evaluates overall antioxidant capacity, including both
water and fat-soluble antioxidants. It has been sug-
gested that electron donation is related to antioxidant
activity, which indicates a decrease in bioactive chem-
ical potency. Antioxidants may operate as reductants,
and the deactivation of oxidants by reductants can be
thought of as redox reactions in which one reaction
species is reduced while the other is oxidized. An-
tioxidants have been found in the root ofAnchomanes
difformis (A. difformis), which may play a role in the
plant’s medicinal action9,13. On the other hand, TCS
interacts with Agrobacterium tumefaciens (A. tumefa-
ciens)AcrR, causing structural changes and inhibiting
adhesion to the AcrA promoter. TCS membrane as-
sociation in human erythrocytes was also studied to
see the underlying mechanisms of electrolytes chan-
nels. TCS induced K+ outflow and haemolysis, im-
plying membrane breakdown while preventing hy-
potonic lysis, which might be mediated by mem-
brane enlargement. TCS significantly decreased the
enzymatic efficiency of membrane-bound K+, Na+,
Mg2+-ATPase14. TCS affects erythrocyte osmoreg-
ulation, promotes membrane instability, and inhibits
monovalent ion movement. According to studies on

its impact on cell fate, TCS possesses estrogenic, pro-
liferative, and apoptotic characteristics14. The cell cy-
cle and death genes and proteins are especially suscep-
tible to TCS regulation. TCS is cytotoxic to epithe-
lial cells and gingival fibroblasts, suggesting that this
may be a new apoptosis inducer in these cells. A re-
search team used BG-1 ovarian cancer cells in various
in vivo and in vitro studies to see how TCS affected
the growth and proliferation of these cells. TCS pro-
motes cell proliferation and raises the protein levels
and expression of the cyclin D1 gene while decreasing
the expression and protein levels of the p21 and Bax
genes. After exposure to TCS, inflammation started
via Toll-like receptor-4 (TLR-4)-mediated signalling
mechanism through gut microbiota. Mustafa et al.,14

discovered TCS targets in human gingival fibroblasts,
including interleukin-1β (IL-1β ), interferon-γ (IFN-
γ), prostaglandin E synthase-1 (PGES-1), and major
histocompatibility complex class II (MHC-II). Inves-
tigations into the subcellular localization of TCS have
shown that nucleus accumulation takes priority over
cytosolic accumulation14. Due to the greater ini-
tial absorption of cytoplasmic TCS, a substantial por-
tion of cytosolic TCS was removed after each wash,
whereas nuclear TCS was retained. This may explain
why TCS has different inflammatory signals. How-
ever, it has been known to be a potential endocrine
disruptor due to binding to androgen and oestrogen
receptors15–17. In terms of TCS’s androgenic prop-
erties, it was found that TCS inhibits testosterone-
dependent transcription while increasing androgen-
dependent transcription. TCS stimulates or inhibits
a variety of signaling pathways, according to evi-
dence on xenobiotic responses to TCS18. Although
considerable progress has been made in TCS signal-
ing, much remains unknown regarding TCS’s mod-
ulatory effects on cellular physiology, especially in
human-based systems. In the administration to the
whole blood leukocytes, TCS inhibited TLR signal-
ing. It leads to the downregulation of several signal-
ing mediators, most notably NF-B inducing kinase
(Nik) and C-jun. It explains the cells’ cumulative
lowered inflammatory response lipopolysaccharides
(LPS). TCS’s endocrine-disrupting properties, partic-
ularly its estrogenicity, has grabbed researchers’ at-
tention. TCS promoted proliferation in BG-1 ovarian
cancer cells through the oestrogen-receptor (ER), as
shown by Kim J-Y et al.19. TCS’s mutagenic poten-
tial has been studied in prokaryotic and eukaryotic
systems using in vitro and in vivo investigations. It
looks for frame shiftmutations, point mutations, clas-
togenic events, and recombination events20.
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TCS did not induce gene mutations within these sys-
tems, as shown by the negative findings of these re-
verse mutation studies in vitro and the host. In
vitro studies of gene mutations of mammalian cells
in mouse lymphoma, L5178Y cells with and without
metabolic stimulation show that the potential for TCS
to inducemutations in the thymidine kinase (TK) do-
main was examined21. Studies have proven that TCS
exhibits anti-androgenic and anti-estrogenic proper-
ties, depending on species, tissues, and cell types22.
A study in China had shown that prenatal TCS ex-
posure in pregnant women led to higher cord testos-
terone levels in infants23. Another study revealed that
TCSwas higher in urine samples than 75% in all tested
samples24. Here, we summarized findings from re-
cent studies, which suggest tumorigenic effects of
TCS. It has been reported in many studies that ex-
tensive usage of TCS can have cancerogenic potential.
Recently, TCS has been demonstrated to cause colon-
associated inflammation, which ultimately leads to
colitis-mediated colon tumours. TCS is also associ-
ated with higher colitis symptoms, ultimately leading
to colitis-mediated colon cancer25.
TCS’s effects on breast cancer cells in vitromay be in-
fluenced by the concentration and other factors such
as oestradiol (natural oestrogen). A smaller head cir-
cumference at birth, early breast development, antibi-
otic resistance, and hypersensitivity are all possible
health consequences. TCS’s presence in milk suggests
that it has travelled through the human breast, raising
concerns about its involvement in breast cancer de-
velopment. A commonly used antimicrobial preser-
vative in personal care products, TCS is an endocrine
disruptor in hormone-dependent tissues. TCS in-
creases vascular endothelial growth factor (VEGF)
production, a chemical that promotes tumour growth
via human prostate cancer stromal cells26. TCS’s
first specific action method in prokaryotic cells was
identified just 20 years ago when it was revealed that
TCS suppressed fatty acid synthesis (FAS) in E. coli27.
By replicating its native substrate in vivo, TCS per-
manently blocked the FAS enzyme enoyl-acyl car-
rier protein (Enoyl-ACP) reductase28. TCS resistance
was also shown by amutant or overexpressedACP ex-
pressed by fabI in bacteria.
As a consequence of these investigations, ACP was
identified as an intracellular TCS target. Multiple
studies supporting fatty acid formulation suppression
as a novel strategy for chemotherapy have been in-
spired by the effectiveness of cerulenin, a mycotoxin
that inhibits FAS in vivo. FAS appears and acts dif-
ferently in normal and malignant tissues, with the
latter having a higher therapeutic index28. Because

of its long history of human usage and broad preva-
lence in consumer products, as well as promising in
vivo results, TCS is a suitable choice for chemother-
apy. TCS may enhance the proliferation of BG-1
ovarian cancer cells by modulating the expression of
cell cycle and cell death genes via ER-based mecha-
nisms, according to in vitro research29. TCS, like E2,
was shown to have estrogenic properties via altering
the appearance of protein kinase B (PKB), mitogen-
activated protein kinase (MAPK), phosphorylated in-
sulin receptor substrate-1 (pIRS-1), and extracellular
signal-regulated kinase (ERK) proteins30. It also in-
hibited the protein synthesis of pIRS-1, PKB, MAPK,
and ERK, which were all increased by E2 or TCS,
and therefore had an antiestrogenic effect. As shown
through its prevalence in various environmental me-
dia, human bodies, and animals, TCS is not effectively
regulated. Its careless use and disposal may put peo-
ple and the environment at risk. In cell-based stud-
ies, TCS is harmful to many cells14. The precise role
of TCS in selecting antibiotic resistance genes and
multidrug resistance genes in the environment is un-
known. It is also necessary to establish the TCS level
required for tolerance choice in environmental com-
munities. Future research should concentrate on find-
ing signalingmolecules controlled by TCS in different
ways and determining their involvement in harmful
or protective effects in various cell types14.
TCS has been shown to reduce the viability and
growth of Michigan Cancer Foundation-7 (MCF-7)
and SKBr-3 cells in culture at a range of 2.5-20 µg/mL.
It also lessened the binding affinity of inhibitors in hu-
man and goose type-1 fatty acids as well as the enoyl-
reductase level31–33. All present new reports indicate
that widely used TCS cosmetic agents can trigger can-
cer, as shown in animal and humanmodels21,34–36 as
well as in clinical studies. Therefore, government poli-
cies should reassess TCS usage in cosmetic products
to prevent its harmful effects on human health. This
manuscript’s main aim is to highlight that TCS causes
oxidative stress, an estrogenic, mutagenic, cancer-
causing agent, and genotoxic agent present in cos-
metic products. A further aim is to attenuate the TCS
toxicity via natural products.

BIOSYNTHESIS OF TCS
TCS is a broad-spectrum antibiotic that inhibits bac-
terial fatty acid biosynthesis at the (Enoyl-ACP) re-
ductase37. TCS is generally considered a broad bio-
cide that targets bacterial membranes, and cellular re-
sistance is rare if TCS does not have a distinct mode
of action. TCS has been found to inhibit enoyl reduc-
tase FabI in various bacteria, including P. aeruginosa
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and S. aureus, after discovering that it blocks the en-
zyme in E. coli38. The enoyl-ACP reductase FabI fam-
ily produces noncovalent, high-affinity ternary com-
pounds with TCS and NAD(P)+ that effectively limit
the enzyme’s participation in biosynthesis39. TCS in-
hibits enoyl reductase by attaching to a location close
to the nucleoside cofactor’s nicotinamide ring. The
TCS phenol ring interacts with the nicotinamide ring
directly and enables substantial activities40.
More enoyl reductase genes have been identified af-
ter discovering TCS’s inhibitory effect on enoyl reduc-
tase, including FabK in S. pneumoniae and P. aerugi-
nosa, FabL in B. subtilis InhA in M. tuberculosis, and
M. smegmatis41. Both FabK and FabL are TCS re-
sistant, whereas InhA is sensitive. Similar inhibition
of TCS fatty acid biosynthesis was also observed in
higher life forms, such as P. falciparum and T. gondii,
which cause malaria42. Both of these species have
a type II fatty acid synthase since they are apicom-
plexans. TCS was recently demonstrated to block a
type I fatty acid synthase (a versatile human enzyme)
in breast cancer cells, even though these enzymes are
commonly thought to be antibiotic-resistant43.

DEGRADATIONOF TCS
Antimicrobial compounds have shown a proclivity for
bioaccumulation in underwater organisms, and they
have been found to survive in aquatic environments
for longer periods. The presence of TCS in the en-
vironment necessitates the monitoring of surface wa-
ter. TCS was discovered in silt from Greifensee Lake
in Switzerland deposited 30 years ago44. The surviv-
ability of TCS in sediment was confirmed in this in-
vestigation, and a breakdown of the TCS using vari-
ous strategies. The TCS level in sediment has progres-
sively enlarged since the early 1960s, when it was ini-
tially introduced, to the mid-1970s, indicating that its
usage trends were becoming more widespread. This
trend reversed from the mid-1970s to the early 1980s,
with most wastewater treatment facilities introducing
a different conventional treatment stage. TCS levels
have risen since the early 1980s, owing to its rising
popularity and use44.
Nonetheless, the comparatively large level of TCS
found in a 30-year-old sedimentary layer from1970 to
1971 indicated that TCS breakdown was highly slug-
gish in the sediment45. A parallel timeline pattern for
TCS in estuary sediments in theUnited States was also
documented. Antimicrobial chemicals can subdi-
vide into sediments and withstand breakdown mech-
anisms under anaerobic circumstances, as evidenced
by TCS’s environmental survival in sediments. Fur-
thermore, sediments are the last sink for the aqueous

ecosystem. TCS persistence in this medium would be
risky since bioturbation generated by animals or hu-
man excavation might push it back into the aqueous
ecosystem46.
Despite its strong chemical volatility and resilience to
both high and low pH, TCS has been discovered to be
easily destroyed in the atmosphere due to photodegra-
dation. Scientists found eight photochemical path-
way subproducts in laboratory testing47. Researchers
found TCS photoconversion to 2,8-DCDD with an
output of up to 12% at pH > 8, using varied illumina-
tion intensities. Under the laboratory conditions (pu-
rified water), the production of 2,8-DCDD yield was
compared to river water spiked with TCS. Accord-
ing to similar results across laboratory and real-world
scenarios, TCS could transform into 2,8-DCDD in
sunshine irradiated water sources48. TCS that per-
sists in the secondary discharge after sediment pro-
cessingmay be chemically transformed after disposal.
In the United States, sodium hypochlorite, a steril-
izing oxidant and a producer of free chlorine is ex-
tensively used for various applications and may in-
teract with TCS. In certain instances, the TCS phenol
carbons may be chlorinated in either ortho- or para-
positions, yielding three chlorinated TCS derivative
(CTD) transitional compounds49. Direct photolysis
is ineffective at degrading dioxin derivatives of TCS,
so they are therefore not a public health problem6.
Similarly, chloramination of TCS results in CTDs
comparable to those formed by the free method50.
Chlorinated TCS derivatives like 4-Cl-TCS, 6-Cl-
TCS, and 4,6-Cl-TCS have been found in sewage
discharge51. CTDs have been discovered at the
apex of marine biological chains and as biomethy-
lated equivalents in fresh water, specimens taken
downstream of a sewage discharge, and in carps that
live in it due to the spread TCS-containing effluents
in streams52. According to these findings, CTDs
are either generated via TCS during water purifi-
cation using free chlorine or are synthesized with-
out passing through the conventional treatment pro-
cesses. As a result, CTDs are regarded as a signifi-
cant environmental concern since they have the po-
tential to preserve or perhaps enhance the antibac-
terial and endocrine-disrupting properties of TCS.
Furthermore, under spontaneous photochemical cir-
cumstances, CTDs such as 6-Cl-TCS, 4,6-Cl-TCS,
and 4-Cl-TCS have been shown to release dioxins in
water53.
Buth JM et al.,54 investigated the history of TCS
dioxin photoproducts and their chlorinated counter-
parts in Mississippi River sedimentary basins. Sun-
light irradiation of CTDs, which produces chlori-
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nated dioxins, is another conceivable cause of TCS-
derived pollutants. The photochemical breakdown
of TCS occurs until by-products are subjected to ul-
traviolet rays after interaction with chlorinated wa-
ter, 2,4-dichlorophenol (2,4-DCP), and 2,8-DCDD
are formed. The chlorination of 2,4-DCP yields
2,4,6-trichlorophenol55. The transitional chlorophe-
nols are then converted to chloroform and tri-
halomethanes56. The ways by which CTDs are
converted to chlorophenols, chloroform, and tri-
halomethanes. TCS can be chlorinated by frequent
exposure to chlorine at water treatment plants. A
wastewater treatment plant discharges chlorinated
TCS, which can be converted intomore harmful diox-
ins by sunlight57. 2,4-DCP is a contaminant of con-
cern according to the United States environmental
protection agency and is hazardous to fish and other
aquatic life58. 2,4-DCP is a chemical that is used to
make insecticides, disinfectants, and antiseptics.
Furthermore, upon exposure to the sun’s rays, the
2,4-DCP decomposes even more, perhaps resulting
in more strongly chlorinated dioxins59. Due to low
levels of ROS in natural rivers and the ineffective-
ness of straight photolysis of TCS, research by Latch
et al.,6 found that dioxin chemicals produced from
TCS are not a public health risk. Microorganisms
like Burkholderia, Pseudomonas, and Sphingomonas
may degrade chlorine andCO2 under natural circum-
stances60.
According to Son et al. (2009)61, radicals that stim-
ulate the destruction of transitional dioxins control
TCS degradation by titanium dioxide photocatalysis.
Furthermore, hydrogen peroxide enhances the oxida-
tive process. TCS is stable at 50◦C when it is kept
separate from biotic contact and kept at a pH of 4–9.
TCS degrades more rapidly in an aqueous medium at
25◦C and pH 7, reaching 50 % in around 41 minutes.
Within 4 hours after therapies, primarily 2,4-DCP is
generated. TCS is easily degraded in aquatic environ-
ments by photolysis, with a half-life ranging from 1
hour in abiotic settings to roughly 10 days in fresh-
water sources62. Furthermore, depending on the re-
activity of TCS with photochemically generated hy-
droxyl radicals, its aerial half-life has been predicted
to be 8 hours63. Even while the current amounts of
TCS and its by-products in the atmosphere are not
dangerous, continued deposition of TCS into the at-
mosphere could approach a threshold value, affecting
all categories of animals in the food chain64.

OXIDATIVE STRESSMECHANISM
If not adequately scavenged, these “two-edged sword”
molecules, ROS, may disrupt the cellular redox equi-
librium, resulting in oxidative harm to protein, lipids

membranes, and nucleic acid65. When the dynamic
balance in the synthesis and removal of ROS in typ-
ical circumstances is disturbed, ”oxidative stress” is
used66. The antioxidant defence mechanism, includ-
ing CAT, SOD, GPx, GR, GSH, Glutathione disul-
phide (GSSG), and glutathione S-transferase (GST),
works to counter the potentially harmful effects of
ROS. As a result, ecologists may measure antioxi-
dant levels to monitor the amount of oxidative dam-
age induced in organisms treated with particular sub-
stances67.

Catalase (CAT)
Adult zebrafish livers treated to different dosages of
TCS, SOD, CAT, and GPx enzyme activity were as-
sessed. When the antioxidant defence fails to resist
this ROS, the overwhelming generation of ROS is a
potential source of enzyme inactivation. ROS elimi-
nation is caused by the change of radicals without oxy-
gen into hydrogen peroxide molecules by SOD, fur-
ther reduced into H2O by CAT and GPx68. As a re-
sult, if these critical first-line defences become less ac-
tive, H2O2 and its degradable compounds may accu-
mulate69. SOD activities were inhibited in all treat-
ment groups relative to the control group, accord-
ing to the research. At the lowest dose of 50 g/L,
though, the caused suppression of SOD was signifi-
cant (p < 0.05) when compared to the control70. The
lower concentrations of SOD activity in the treatment
groups’ liver tissue may be related to the ROS gener-
ated by TCS treatment. The CAT and the GPx en-
zymes must maintain intracellular redox equilibrium
and H2O2 degradation68.
The activity of CAT followed a parallel path to that of
SOD in the liver. There was a substantial decrease
in CAT activity between the treatment and control
groups (p < 0.05). The reduction ofCATactivity in the
liver varies considerably between treatment groups at
p < 0.05, with the effect of suppression beingmost no-
ticeable at the lowest dose (50 g/L)71. The apparent
decrease in CAT behaviour implies that the produced
H2O2 may not be quickly destroyed by CAT, indicat-
ing a redox imbalance in the cell. The pattern toward
reduced CAT activity was lower in the liver72. Poor
regulation of antioxidant enzyme activity may result
in an increased amount of ROS, thus reducing the an-
tioxidant system’s efficiency. This theory is supported
by the idea that increasing ROS produced the reduc-
tion in SOD, resulting in a loss in enzyme efficiency
and function73.
CAT plays a vital role in the progression of ROS due to
TCS toxicity (Figure 1). After subchronic treatment
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Figure1: Variousunderlyingmechanismofoxidative stress. RoleofMDA, TAC, CAT,GSH, inflammation, cellular
longevity and membrane damage have been observed that any imbalance can lead to oxidative stress.

with TCS, the enzyme activity of SOD and CAT was
assessed in the brain of adult zebrafish74. CAT ac-
tivity was reduced to control across treatment groups.
There was a statistically significant difference in CAT
activity between the control and increased TCS ex-
posure (100 g/L and 150 g/L). TCS may alter the ze-
brafish brain’s antioxidant systemdue to the reduction
of CAT and SOD activities. Despite this, mean SOD
activity in the brain was significantly greater than in
the liver for both TCS treatments, whereas mean CAT
function in the brain was significantly lower. The var-
ious physiological roles of the organsmay describe the
discrepancy in numerical ranges of antioxidant enzy-
matic activity 74.

Reduced glutathione (GSH)
GSH and GSSG (the glutathione system) are non-
enzymatical antioxidants, and also GSH enzymes are
regarded as the second-line defensive mechanism for
oxidative damage69. The action of GR is critical for
GSH regeneration as a defencemechanism against ox-
idative stress. Because GSH is converted to an oxi-
dized form, GSSG, during metabolic activity, GR re-
cycling of GSH from GSSG is critical for sustaining
the cellular antioxidant protective mechanism75. Ad-
ditionally, it’s important to note that GPx is involved

in detoxifying ROS and H2O2 through the oxidation
of GSH to GSSG, implying that suppression of GPx
activity may impact glutathione and its conjugate lev-
els9.
Scientists found a significant decrease in GSH con-
centration in adult zebrafish livers exposed to TCS
compared to a control group (p0.05). GSSH concen-
trations were also considerably less in TCS-exposed
groups than in controls (p < 0.05). Furthermore,
except for the 100 g/L TCS exposure group, the
treatment groups did not consider the decrease in
GSSG concentrations76. Following TCS exposure,
the GSH/GSSG concentrations were decreased, indi-
cating GSH levels (Figure 1). GR activity was ob-
served to be less than control in treatment groups. Be-
sides the 50 g/L and 100 g/L groups compared to the
control group, the reduced GR activity was not sub-
stantial within groups (p < 0.05)77. The decreased
GSH/GSSG found in the current researchmay explain
that GSH could not be revived to regain its normal
concentration in the liver after treatment to TCS con-
centrations due to lower GPx and GR activities. The
results demonstrated that adult zebrafish livers lost
antioxidant mechanisms following subchronic expo-
sure to TCS.

4755



Biomedical Research and Therapy, 2021; 8(12):4750-4774

In contrast to the roles of GPx and GR, the study
found that treatment groups had higher GST activity
in their livers than the control group. GST is a bio-
transformation enzyme that plays an important role
in coupling glutathione with various contaminants68.
GST protects cells from oxidative damage in phase II
detoxification by catalysing the tripeptide GSH with
electrophilic substrates. Except for the difference be-
tween the 150 g/L groups and the control, which was
notable at p < 0.05, there were no substantial varia-
tions in increased GST activity among groups78.
The research results are under the enhanced GST ac-
tivity reported in zebrafish larvae challenged follow-
ing TCS exposure (250 – 350 µg/L)79. De novo syn-
thesis may account for the decrease in rGSH content
in the cells, explaining its stable level following TCS
treatment. The homocysteine molecule is linked to
the production of rGSH, and the cysteine amino acid
in GSH is made from the same pool of homocysteine
utilized to make S-adenosylmethionine (SAM). For
methyltransferase enzymes, SAM serves as a methyl
donor. As a result, the GSH system is intimately
linked to DNA methylation, critical throughout em-
bryonic development74.

Malondialdehyde ( MDA )
The peroxidation of cell membrane lipids is a po-
tential result of organisms being exposed to ROS-
generating pollutants. MDA is a result of membrane
LPO and is often employed as a biomarker to indicate
the degree of cell membrane damage80. The inability
of the antioxidant system of the liver to remove ROS
caused by TCS after subchronic exposure might ex-
plain the enhanced MDA concentrations in the liver
(Figure 1). A recent study on Daphnia magna (D.
magna) showed that MDA levels were significantly
greater than controls after 6 hours of TCS exposure.
Still, they were significantly lower after 24 and 48
hours, indicating lower MDA levels. The increase
in MDA content in Eisenia fetida, according to Lin
D et al.,81, showed oxidative stress caused by TCS.
The current research found an opposite connection
between MDA concentration and SOD action, ris-
ing first and then decreasing. Consequently, the de-
crease in MDAwas likely due to the defensive activity
of SOD in TCS-exposed D. magna against oxidative
damage82.
In D. magna, TCS is responsible for the production
of MDA, aminopyrine N-demethylase (APND),
ethoxyresorufin-O-deethylase (EROD), and ery-
thromycin N-demethylase (ERND)83. Additionally,
increased amino acid levels in daphnids, like glu-
tamate, proline, and glutamine, have been related

to an overall state of oxidative stress84. TCS has
been found to change the expression of stress-related
proteins, including heat shock protein 70 (hsp-70)
and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) in D. polymorpha, in addition to LPO85.
TCS exposure produced CAT, EROD, ERND, and
APND in yellow catfish Pelteobagrus fulvidraco86.
Up- and downregulation of Cyp1a, Cyp3a, and
Gst expression was seen in response to TCS level
and duration of exposure, a trend similar to MDA
production87. In goldfish Carassius auratus, TCS-
induced oxidative damage was also found to have
elevated MDA. After TCS exposure, the goldfish’s
liver showed various antioxidant enzyme responses
and changes in MDA levels over a pH value ranging
from 6 to 99,82.

Total Antioxidant Capacity (TAC)
Antioxidant molecules, particularly those derived
from plants, have grabbed scientists’ attention in re-
cent years. On the one hand, there is expanding
proof of the preventive effect of vegetables and plant
foods on cancer and other neurological disorders.
On the other hand, there is emerging fear about the
health consequences of synthetic antioxidants cur-
rently practiced as food additives88. Antioxidant sub-
stances are free radical scavengers since they limit or
postpone substrate oxidation by free radicals, lead-
ing to substantial protection of LPO in biological sys-
tems. The primary natural antioxidants found in
plants, foods, and drinks are phenolic and polypheno-
lic compounds89. These compounds, which involve
flavonols, quercetin, catechins, and anthocyanins,
have common structural composition. They optimize
the oxidative stability of foods and human systems
through their redox characteristics which can help
neutralize free radicals, quench singlet oxygen, and
decompose hydroperoxides, among other things90.
The TAC was determined using the extract’s reduc-
tion of Mo (VI) to Mo (V) and the synthesis of a
green phosphate/Mo(V) complex at an acid pH91.
It assesses TAC that is both water-soluble and fat-
soluble. The findings show that themethanol and ace-
tone extracts have greater TAC (ascorbic acid equiv-
alent) at low quantities. However, the variations are
not statistically significant (p = 0.05) compared to the
n-butanol extract. Furthermore, the n-butanol ex-
tract was shown to have substantial overall antiox-
idant activity at greater concentrations, equal to 90
mg/g ascorbic acid11. As the antioxidant capacity of
ascorbic acid has been utilized as a benchmark against
which plant extracts with potential antioxidants have
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been tested, this indicates that the n-butanol extract
may have similar antioxidant components92.
It has been proposed that the donation of electrons
is linked with antioxidant activity, which reflects the
reduction in potency of bioactive substances. Antiox-
idants may function as reductants, and the deactiva-
tion of oxidants by reductants can be regarded as re-
dox processes in which one of the reaction species
is reduced at the cost of the other being oxidized90.
The Fe3+/ferricyanide complex is reduced to the fer-
rous form when reductants, such as antioxidant com-
pounds, are present in the samples. The extracts’ re-
ducing power increased as concentration increased,
indicating that the extracts’ capacity to donate elec-
trons is sensitive at lesser concentrations. The con-
siderably higher absorbance values of n-butanol ex-
tract than gallic acid indicates that the n-butanol
extract has strong redox capability and may func-
tion as a reducing agent, hydrogen donor, and sin-
glet oxygen quencher93. However, the extracts in-
cluded the identical classes of phytochemicals, there-
fore the quantitative variation in antioxidant activity
may be due to differences in phytochemical concen-
trations94. The findings indicate that the n-butanol
extract has a higher concentration of antioxidants
than the methanol and acetone extract95. It was dis-
covered that the root of A. difformis has antioxidants
that may be important in the therapeutic activity of
this plant portion. These results call for more re-
search in isolating and characterizing the bioactive
molecules accountable for the antioxidant action12.

Cell membrane Damage
Vischer and Regös may have been the first to describe
TCS’ antibacterial activity, which they demonstrated
via topical treatment96. TCS’s various action modes
and cellular targets have been the subject of further re-
search, which continues today. TCSwas originally be-
lieved to react with the prokaryotic cell membrane in
a nonspecific manner97. The TCS resistance of gram-
negative bacteria has supported this hypothesis due to
the membrane of their cells. The genetic response to
TCS forM. tuberculosis has been investigated by Betts
et al. (2003)98. Changes have been found in vari-
ous cell wall genes transportation, detoxification, and
other functions such as DNA replication and tran-
scription. In E. coli and Rhodospirillum rubrum (R.
rubrum) S1H, many genes implicated in the mem-
brane tension reaction pathway were investigated99.
Substantial variations in phenotypes of genetic code
linked to the cell wall, flagella, cell envelope, mul-
tidrug efflux, and membrane structure were discov-
ered during the electro-Fenton conversion of TCS.

These results add to a previous study describing in-
creased TCS resistance from an overexpressed acrAB
multidrug efflux pump99. TCS is thought to interact
with the Agrobacterium tumefaciens transcriptional
repressorAcrR, causing structural changes and block-
ing it from adhering to the promoter of the efflux
pump AcrA100.
In human erythrocytes, the association of TCS with
the cellular membrane was also investigated. TCS
caused K+ outflow and visible haemolysis, imply-
ing membrane destruction while counteracting hy-
potonic breakdown caused by membrane enlarge-
ment101. TCS also decreased the activity of Na+,
Mg2+-ATPase, and K+, which is membrane-bound.
According to these findings, TCS induces mem-
brane instability, disrupts monovalent ionmovement,
and alters the overall osmotic balance of red blood
cells102. Several investigations have shown proof of
membrane disruption in the form of decreased in-
tegrity and permeability. Guillen J et al.,103 used nu-
clear magnetic resonance (NMR) spectroscopic to es-
tablish how TCS interfaces with the plasma mem-
brane. They discovered that TCS introduction into
aquaphobic regions within the lipid membrane, per-
pendicular to phospholipid molecules.

Cellular Longevity
TCS and final cell destiny drew attention because of
its application in oral hygiene items, as shown by
two pivotal research on human gingival cells85. TCS
leads to having a negative impact on cellular longevity
(Figure 1). A new apoptotic trigger in epithelial cells
may be TCS, cytotoxic to gingival epithelial cells and
gingival fibroblasts. Till now, research in both hu-
man and animal model systems has taken a more
concise approach to link TCS-induced cell death to
other cellular rivals. Several dosages and scheduled
responses were seen if TCS was applied to placental
human choriocarcinoma cells104. Elevated TCS lev-
els have suppressed the release of β -human chorionic
gonadotropin (β -hCG), despite increased oestradiol
and progesterone production (104). By stimulat-
ing caspase-3 and fragmenting Hoechst 3342 labelled
DNA, considerable cell mortality was detected as
apoptotic in furthermore to decreased growth104.
Likewise, Winitthana et al. (2014)105 found that 24-
hour exposure to 10 M TCS caused cell mortality and
suicide in human lung cancer anoikis-resistant H460
cells. Nevertheless, safe levels (to 7.5 µM) improved
cell development without modifying the proliferation
(elevated colony counts and decreased size). TCS also
encouraged cell migration and invasion, as well as the
epithelial-to-mesenchymal transition (EMT).
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A research team used BG-1 ovarian cancer cells in
various animals and laboratory experiments to deter-
mine how TCS influenced the development and pro-
liferation of such cells. TCS stimulates cell prolifera-
tion and cyclin D1 gene expression and protein levels
while lowering p21 and Bax genetic code appearance
and protein level106. The ER antagonist ICI 182,780
greatly inhibited these impacts, implying that ER is
involved in TCS-induced cell cycle development and
its antiapoptotic function107. MCF-7 bosom malig-
nancy cells and LNCaP prostate cancer cells both re-
acted to TCS in the same way, according to other re-
searchers in the same group. 1 M of TCS raised de-
velopment and multiplication in MCF-7 cells over six
days, with elevated cyclin D1 and lower p21 expres-
sion108. Research on the effect of TCS on cell des-
tiny has shown that it has estrogenic, proliferative, and
apoptotic properties109. TCS regulation is especially
susceptible to genes and proteins that control the cell
cycle and apoptosis. In addition to other research
data such as cell type and exposed length, the varia-
tion in ultimately cell destiny appears to imply inter-
racial difference and dosage reaction. Extending our
understanding of the presence and identifying a pre-
cise molecular ”switch” that can shift the balance in
support of apoptosis or persistence could be a crucial
topic of upcoming research14.

Inflammation
TCS has long been known as a successful treatment
for infectious dermatitis, with the compound’s ther-
apeutic ability ascribed entirely to its antimicrobial
action110. Researchers didn’t establish a relationship
between TCS exposure and non-infectious inflamma-
tion remission until the last two decades of the previ-
ous century. The usage of antibacterial agents as anti-
inflammatory therapeutic has gained much attention
over the past two decades111. Anti-inflammatory ac-
tivity has been demonstrated in many antibiotics, in-
cluding quinolones and macrolides112.
According to Gaffar A et al.,113 TCS reduced LPO
synthesis, 15-LPO, 5-lipoxygenase, IL-1-induced
prostaglandin E2 (PGE2), and cyclooxygenase-1
(COX-1), COX-2 in gingival cells. Additionally,
TCS has been found to inhibit a broader variety of
inflammatory agents, such as arachidonic acid and
prostaglandin I2 (PGI2) produced by TNF-induced
PGE2, IL-1β , phospholipase A2 (PLA2), COX, and
tumour necrosis factor114. Furthermore, individuals
who received a mouth rinse containing 0.15 percent
TCS had considerably fewer oral erythematous
lesions than those who received a TCS-free mouth

rinse in a crossover trial. TCS’ anti-inflammatory
effects had been proven and were generally acknowl-
edged throughout the scientific and medical sectors
by that time115.
To date, further research has emphasized the anti-
inflammatory properties of TCS. In human gingival
fibroblasts, Mustafa M et al.,15 found IL-1β , IFNγ ,
MHC class II, and PGE synthase-1 as TCS targets.
Notably, investigations determining the subcellular
location of TCS indicate priority for nucleus accumu-
lation over cytosolic accumulation. Since the cyto-
plasmic TCS absorption was greater at first, follow-
ing successive washing, a large percentage of cytoso-
lic TCS was removed, whereas nuclear TCS was re-
tained116. This may account for the altered inflam-
matory signaling seen in TCS. MicroRNA (miRNA)
regulation of the TLR pathway was responsible for
inhibiting LPS-induced cytokine production and an-
timicrobial activity in primary human oral epithelial
cells117. The results were similar in cells obtained
from diabetes individuals, where the TLR response
was amplified118.
On the other hand, TCS has been shown to inhibit
the TLR response induced by LPS via altering miR-
NAs (lowering miR155s but promoting miR146a).
TLR4 induced changes in inflammatory responses
in mice’s skin and leukocytes when they were topi-
cally challenged with TCS119. Similarly, TCS sup-
pressed PGE2-stimulated matrix metalloproteinase-
13 (MMP-13) or parathyroid hormone (PTH) pro-
duction in osteoblastic rat osteosarcoma cells120.
Since hyperactive MMP-13 has been related to peri-
odontal disease, it’s been proposed that TCSmay pro-
tect against the inflammatory condition of the mouth
by acting on that same enzyme, besides others121.
Notably, TCS has proven beneficial in treating vari-
ous inflammatory states, such as hidradenitis suppu-
rativa (HS) and cardiovascular disease. Furthermore,
the application of TCS-drenched ureteral stents ap-
pears to become a potential strategy for treating uri-
nary tract infection (UTI) and inflammation. In preg-
nant women, an enhanced urinary TCS was linked
to an elevation in serum IL-6, suggesting a poten-
tial pro- or anti-inflammatory function122. TCS is
a mediator of immunological and inflammatory re-
sponses, as shown by the abundance of data avail-
able. Nonetheless, mounting evidence suggests that
TCS significantly amplifies and worsens the ultimate
result when a pre-existing unfavourable state, like in-
flammation or tumour, is present14.
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Cellular Signalling
The ability to adapt to the continuously shifting in-
tracellular and external environments is greatly facili-
tated by communicating efficiently. The transmission
of data containing particular commands is carried out
by carriers that work sequentially along a specified
way. Moreover, tasks are often performed by sequen-
tially transducing numerous signals via a complicated,
intertwining network, including a diverse array ofme-
diators123. As a result, the relevance of cell signaling
cascades in response to xenobiotics must not be over-
stated.
Cell lines of humans have given a lot of knowledge,
especially in researching stressors and xenobiotic-
sensitive signalling molecules like TCS (Figure 1).
The conventional MAPK has also been implicated as
TCS targets124. TheTCS-induced proliferation of JB6
Cl 41-5a cells was aided by the activation of c-Jun
N-terminal kinases (JNK), p38 MAPKs, and ERK1/2,
in addition to Akt125. Proliferation induced by TCS
was significantly reduced when phosphoinositide 3-
kinase (PI3K) or MEK1/2 were inhibited. Accord-
ing to the results of another study on rat neural stem
cells, cytotoxicity and apoptosis induced by TCS were
linked to stimulation of the JNK and p38 pathways,
as well as blocking of the ERK, Akt, and PI3K path-
ways126. This indicates that these proteins are in-
volved in both cellular stability and mortality due to
TCS’s action. Studies used the hypothalamus from
Sprague-Dawley rats and Human Nthy-ori 3-1 thy-
roid follicular cells to demonstrate that TCS stimu-
lates p38 and JNK127. In that research, TCS affected
the amount of thyroid peroxidase (TPO) via stim-
ulating the thyrotropin-releasing hormone receptor
via p38 MAPK128. TCS reduced AP-1 sequence and
Fos/Jun interaction within the C-fos promoters and
Mmp-13, which reducedMmp-13 synthesis in mouse
osteoblastic osteosarcoma cells120.
The researchers were particularly interested in TCS’s
endocrine-disrupting properties, particularly its es-
trogenicity. Kim YS et al.,106 demonstrated that TCS
induced BG-1 ovarian cancer cells proliferation via
the ERα . Proving the function of ER, the application
of ICI 182,780 restored TCS proliferation character-
istics along with related modifications at the levels of
cyclin D1, p21, Bax, and protein. Similarly, follow-
ing TCS treatment, the ERwas involved inMCF-7 cell
proliferation and an increase in the size of breast tu-
mours in mice109. The suppression of TCS by ICI
182,780 or kaempferol, as well as the activation of
insulin-like growth factor (IGF), particularly pIRS-1,
PKB, MAPK, and pERK1/2, supported this theory 30.

In addition, kaempferol reduced the development of
VM7Luc4E2 cells stimulated by TCS29. These find-
ings are consistent with those of Huang et al.,129,
who previously described the estrogenic activity of
nanomolar doses of TCS in identical cells.
The TCS has a dual impact on ER signaling, accord-
ing to new research. For instance, Henry and Fair33

showed that TCS at concentrations ranging from 7nM
to 700M shows estrogenic action when given solely
toMCF7 cells but becomes antiestrogenic when com-
bined with E2. According to research, TCS has lit-
tle effect on rat uterine development, but it may help
ethinylestradiol (EE) perform better130. TCS en-
hances EE-induced suppression of ER and ER expres-
sion in independent research but does not stimulate
ER when given alone at dosages ranging from 30nM
to 100M. According to the study, TCS also reduced E2
and oestrogen sulfotransferase efficiency in the sheep
placenta131. In contrast, a TCS-derivative combina-
tion produced enhanced ERβ activity but not ERα ,
resulting in neurological and psychological problems
in zebrafish132. ICI 182,780 andRU486 restored both
abnormalities, suggesting that the antimicrobials may
have an estrogenic effect.
In terms of TCS’s androgenic characteristics, it was
discovered that TCS inhibits-TSN-associated tran-
scription while promoting androgen-dependent tran-
scription133. According to Riad MA et al.,134, TCS
therapy alone or in combination with butylparaben
reduced TSN, follicle-stimulating hormone (FSH),
and luteinizing hormone (LH) levels in weanlingmale
rats. At the same time, it increased E2 after a single
TCS treatment. Bicalutamide, an androgen receptor
(AR) antagonist, significantly inhibited TCS-induced
proliferation and translocation of LNCaP cells.
Protein structure and dynamics are affected by cal-
cium levels inside cells. Conversely, Ca2+ binding
to proteins help maintain the ion’s concentration in
a physiological limit while simultaneously activat-
ing various cellular functions such as gene expres-
sion, movement, secretion, and longevity 135. Apart
from proteins, several factors, like xenobiotic expo-
sure, affect intracellular Ca2+ concentration. TCS in-
creased cytosolic Ca2+ in primary skeletal myotubes
in a dose-dependent manner, regardless of exogenous
Ca2+, via the Ca2+ channel ryanodine (Ry) receptor
type 1 (RyR1)26. Accordingly, in vitro and in vivo
exposure to TCS was impaired by muscle contractil-
ity 136. TCS also disrupted the two-way communica-
tion in RyR1 channels and Ca2+ ions by inhibiting
Ca2+ entry mediated by excitation137.
The data on the xenobiotic reaction to TCS has
shown that TCS activates or suppresses many sig-
naling pathways. Depending on the experimental
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circumstances and model under study, diverse re-
sults occur across species and even within the same
species138. Although significant advancements in
TCS signaling have been accomplished yet, there is
still much to learn about TCS’s modulatory impacts
on cellular physiology, particularly in human-based
systems. TCS therapy has an unknown impact on
many human cell types and tissues, so it’s critical to
determine which signaling pathways are involved in
cellular development, metabolism, and general activ-
ity 14.

ESTROGENICITY
TCS, an antibacterial molecule, has a negative impact
on human genotoxicity, and its antiandrogenic capa-
bility damages DNA. TCS has induced IP at a dosage
of 15 mg/kg for two days in a row. TCS therapy re-
sults in a substantial reduction in testicular hormones
(testosterone FSH and LH)139. TCS’s impact on the
environment and human health. TCS is prooxidant
and cytotoxic in a variety of ways, according to cell
research. TCS is involved in both estrogenicity and
anti-estrogenicity in cancer development140. TCS re-
search on surface water and wild fish. TCS and a bi-
nary combination with BE2 had a negative impact on
testicular growth and reproduction in fish at a dosage
level of TCS 117.9 mg/L141.

MUTAGENICITY
The mutagenic capability of TCS has been studied in
several ways, including in vitro and in vivo tests that
look for point mutations, recombination events, and
frame shift mutations in prokaryotic and eukaryotic
systems. On TCS, in vitro microbial reverse muta-
tion tests (Ames Assays) were performed14. Various
Salmonella typhimurium (S. typhimurium) strains,
with or without S9 metabolic stimulation, were em-
ployed in vitro tests using TCS.Muller D et al.,142 also
investigated the mutagenicity of TCS in a bacterial re-
verse mutation test using intrasanguineous hosts. All
findings from these reverse mutation tests in vitro and
host were negative. It showed that TCS did not induce
gene mutations143.
Gene mutation investigations in mammalian cells via
in vitro model suggested that metabolic stimulation
of mouse lymphoma L5178Y cells with and without
TCS has shown the ability to producemutations in the
TK region of a gene144. In host-mediated research in
mice, Müller D et al.,145 investigated the mutagenic-
ity of TCS at the TK gene inmouse lymphomaL5178Y
cells, finding no treatment-related changes in malfor-
mation rate. There was no rise in the mutant rate at

doses that did not cause cell death (up to 20 g/mlwith-
out S9 and up to 15 g/ml with S9).
However, De Salva et al.,146 and Bhargava et al.,147,
continue to believe that TCS is not a mutagen, and
antimicrobial individual care items are not harmful to
one’s health. Despite the positive results of the mam-
malian spot test, most of these tests revealed that TCS
had no mutagenic ability. Fahrig R et al.,148 was the
first to conduct themammalian spot test and yielded a
positive result, but was later replicated by Russell et al.
(1980)149 yielded negative results. Fahrig R et al.,148

have been challenged, claiming that the optimal TCS
dosage could produce maternal toxicity, preventing
offspring evaluation. It’s unclear why these two types
of research, which used the identical methodology,
produced such disparate findings. Fahrig R et al.,148

employed a larger dosage of TCS soluble in hank’s bal-
anced salt solution (HBSS). In contrast, Russell LB,
and Montgomery C. et al.,149 found TCS insoluble in
HBSS and consequently applied methanol to dissolve
the antibiotic. Russell LB and Montgomery C.149 as-
sumed that the Fahrig R et al.,148 investigation was
unsuccessful in inserting one of the TCS dams be-
cause the absorption of the TCS in HBSS was re-
stricted, explaining the toxicity at 50 mg kg−1. It was
extremely hazardous to embryos149. Many scientists
appear to endorse this study observations149 as TCS
safety reviews.
The researchers have carried out three-wide genomic
DNA (0.2T-AMX, 0.2T-CHL, and 0.2T-TET) se-
quencing for reproduced mutants induced by TCS (n
= 6) and for wild strainE. coli (n = 2) to find important
genetic modifications of antibiotic resistance caused
by TCS. When compared to non-treated E. coli, se-
quencing of 6 resistant mutants produced following
treatment of TCS at 0.2mg/L showed 14 geneticmod-
ifications in 11 genes and 9 alterations in intergenic
regions. The +A insertion in the insB-1 gene was seen
in all sequenced mutants, along with substitution al-
terations in the fabI genetic code150. Because TCS
interacts with the enoyl reductase FabI, which is ex-
pressed by the fabI chromosome, genetic variations
in the fabI chromosome may impair TCS effective-
ness by altering the shape of the targeted fabI pro-
tein151. Apart from the typical mutations, several
strain-specific mutations have been discovered. The
citC (A346T), acrR (L65R), and soxR (R20S) substi-
tute alterations, for example, were detected solely in
the 0.2T CHL strains. In comparison to other strains,
the 0.2 T-TET strain contains a 1 bp frameshift in
the insl-1 genetic coding and a replacement variation
in the marR chromosome (T72P)152. At the same
time, transcriptional analysis was used to identify the
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molecular processes behind TCS-induced antibiotic
resistance. Complete genome IlluminaRNA sequenc-
ingwas used to see how threemutant kinds (n= 9) and
wild-variant E. coli (n = 3) responded to the 8-hour
0.2 mg/L TCS treatment. Acute TCS treatment leads
to typical transcript alterations between mutants and
wild-kind E. coli compared with untreated wild-kind
E. coli (n = 3)151. In contrast, the cellular antioxidant
genes soxS, yhcN, and YgiW and the membrane en-
coding porin gene ompX have decreased153. TCS in-
duces oxidative stress in E. coli at a concentration of
0.2 mg/L, while simultaneously reducing the regula-
tion of genes that encode antioxidants, activating the
SIM response to DNA deterioration152.
TCS-induced genetic changesmay have enhanced an-
tibiotic tolerance bymodulating the genetic code’s ap-
pearance concerning antibiotic resistance. Since the
promoter of the gene ampC encoding beta-lactamase
overlaps the frdD gene space in E. coli K-12154. The
frdD alteration observed in 0.2T-AMXmutants could
have impacted the ampC supporter endurance155, re-
sulting in greater ampC expression (log2 fold change
(LFC) = 5.4) and elevated beta-lactam antibiotic tol-
erance156. Furthermore, soxR gene alteration may
cause a spike in soxS expression157, leading to a rise
in efflux via boosting acrAB regulation158. As a result
of the overexpression of the AcrAB many drugs ex-
porter channel, multiple antibiotic resistance is likely
to occur159. Mutations in the marR gene may have
reduced adhesion capacity in 0.2T-TET mutants, re-
sulting in upregulation of marAB genes that control
overall multidrug resistance160. As a result, MarAB
may have sparked the development of an antibiotic re-
sistance genes cascade, includingGadAB-YadGH and
AcrAB-TolC 161.

CARCINOGENICITY
TCS is a diverse antibiotic negotiator often used in
cosmetics, toothpaste, and other consumer goods.
Queries have been expressed about the blend’s wide-
ranging use in customer goods and its recognition in
bosom milk, pee, and sera. It’s possible linked to a
variety of human health effects16. The compound’s
extensive use in consumer goods, as well as its pres-
ence in bosom milk, pee, and sera, has sparked wor-
ries about its possible link to a variety of human health
effects. Recent data put forward that TCS can serve a
part in cancer growth, possibly due to its estrogenic
properties or propensity to suppress fatty acid produc-
tion16.
The most common mechanism of endocrine distur-
bance by exogenous substances is the suppression of
the internal secretion (hormones) from attaching its

receptor sites by trying to compete for sense-organ
linkage locations with the competitor140. This is one
of the mechanisms via which TCS causes endocrine
dysfunction26. It is well established that when a lig-
and binds to a receptor site, it induces conformational
changes in the sense-organ, resulting in the synthe-
sis of transcription factors essential for the represen-
tation of internal secretion sensitive genes162. Hy-
pospadias, cryptorchidism, and cancer are uncontrol-
lable physiological outcomes of the antagonist’s repre-
sentation of oestrogen-sensitive genes140.
Carcinogenicity and precocious puberty might be in-
terpreted as a result of receptor overstimulation, pre-
sumably caused by the high TCS level, or as a result
of TCS occupying the receptor’s ligand engaging do-
main33. More research is needed to link TCS con-
centrations in the environment with observed physio-
logical consequences in animals, such as unfavourable
fertility impacts. However, the in vivo toxicity of TCS
has not been established accurately, noticeable con-
centrations of the substance in exposed humans’ body
fluids. TCS bio-accumulates and is widely dispersed
in human tissues, as evidenced by the increased TCS
levels in tissues compared to ambient levels26.
There have been reports of human beings developing
allergic responses to TCS. Extensive usage of TCS-
containing hand detergents has been linked to der-
matitis or subsequent exposure to sunshine163. Sim-
ilarly, after extended usage of toothpaste containing
TCS, lesions have been reported to occur in the oral
cavity and on the lips of human patients164. Elevated
TCS concentrations in urine have been linked to im-
munological malfunction, allergic responses, and the
development of asthma in children165. TCS has been
shown to modify the structure of human serum al-
bumin166. Endogenous molecules are obstructed by
toxic substances attached to serum albumin and al-
ter the shape of the protein molecule, thereby impair-
ing its function or even altering its physiological activ-
ity. Researchers found that greater urinary concentra-
tions of TCS were associated with lower fecundity in
women88.
Xenoestrogens are oestrogen-like chemicals widely
present in cosmetics, insecticides, and plastic bot-
tles. Xenoestrogens interact with oestrogen attach-
ment to oestrogen receptors in the human body, re-
sulting in oestrogen-dependent health consequences
such as maturation, reproductive health, and fer-
tility 167. TCS is a less well-known xenoestrogen
with antimicrobial properties often found in cosmetic
products, toothpaste, detergent, and other consumer
goods. The ubiquitous usage of TCS, along with its
presence in pee, sera, and in women’s bosom milk,
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has prompted concerns about its link to various health
consequences, including cancer168. According to
an existing study, TCS can be estrogenic and anti-
estrogenic33. Recent evaluations imply that TCS is
estrogenic at lower concentrations because it pro-
motes female sex hormone-sensitive bosom cancer
cells. TCS inhibits the development of these cells at
increasing concentrations, implying that higher doses
may have an anti-estrogenic impact169.
The impacts of TCS on bosom cancer cells in vitro
may be affected by concentration and other variables
like oestradiol (natural oestrogen)170. Untimely bo-
som development, antimicrobial opposition, and hy-
persensitivity are possible health consequences171.
However, the existence of TCS in milk indicates that
it has passed through the human bosom, raising wor-
ries about its potential role in developing bosom can-
cer170. Plasma and sewage from people indicate the
systemic transfer of TCS to humans, although local
absorption from cosmetic goods applied to the bo-
som region is another exposure mechanism. TCS
is a type 1 FAS enoyl-reductase blocker that is im-
pactful against the bosom cancer cell lines MCF-7
and SK Br-3 in cultured cells172. The disruption of
human FAS through a different method and at var-
ious active sites reinforces the idea that type 1 FAS
could be a chemotherapeutic goal. It also implies
that inhibiting any of this multipurpose enzyme’s ac-
tivity could be useful31. When a substance is so
widely diffused in the aquatic environment, it can
induce an endocrine disruption in aquatic animals,
which is a reason for concern. The early investiga-
tions in medaka fry (Oryziaslatipes) indicated that
TCS could be slightly androgenic based on alterations
in fin size and sex ratio fluctuations173. TCS has been
demonstrated to bind to proteins in other investiga-
tions. InNorthAmerican bullfrogs, it binds to thyroid
hormone receptors and disrupts their endocrine sys-
tem174. TCS can potentially cause endocrine disrup-
tion by raising thyroid hormone levels. Thyroid hor-
mone levels above a certain threshold may indicate a
greater chance of getting bosom cancer175. Thyroid
dysfunction is more common in bosom cancer pa-
tients than in healthy people, although no clear link
has been discovered176.
Environmental chemicals may harm human health
and induce carcinogenesis, according to accumulat-
ing data. TCS enhances the release of the VEGF,
a substance that promotes tumour development177.
This process involves the direct stimulation of amem-
brane ion channel which causes an elevation in intra-
cellular calcium levels. In primary cultivated human
prostate cancer, stromal cells show that ecologically

significant levels of TCS activate a TRP family, TRPA1
(Transient Receptor Potential Ankyrin 1), using cal-
cium imaging and electrophysiological approaches.
TRPA1 activation of TCS raised baseline calcium in
stromal cells, boosted VEGF production, and en-
hanced epithelial cell proliferation178. Immunofluo-
rescence labelling of prostate tissue in formalin fixa-
tion and paraffin embedding revealed that the TRPA1
channel was expressed only in prostatic adenocarci-
noma stromal cells179. Although the tumour’s andro-
gen reliance has long been known, epidemiological
studies imply that elements from a Western lifestyle
can also take part in its growth180. Prostate cancer
growth and development are thought to be influenced
by epithelial-stromal interconnections181. Carcino-
mas are two interconnected parts: neoplasia epithe-
lia cells and the supportive tumour stroma, which
secretes cytokines and growth factors to control key
procedures such as tumour propagation, vasculature,
and penetration182.

GENOTOXICITY
TCS and triclocarban effect on the Tetrahymena ther-
mophila (T. thermopohila) inhibit T. thermpohila with
24 h EC50 values of 1063 and 295 µg/L−1. Re-
spectively both TCS and TCC significantly damage
DNA183. The study of TCS on goldfish for 28 days re-
sults inTCSdamage the erythrocyte tailDNA184. The
dose of 0.125mg/L−1 did not affect the size and shape
of the cell. But the dose of 0.5 mg L−1 affects sex-
ual reproduction and damages dependent DNA stan-
dards184. The broad spectrum TCS study on the ze-
brafish had a ratio of 0, 17, 34, 68 µg/L TCS for 42
days. Antioxidant-related gene at 34 the gills were sig-
nificantly down-regulated as compared to 68 µg/L. In
the 34 and 68 µg/L TSC groups, the Bax gene was
substantially up-regulated in the ovary. In zebrafish,
a greater dosage of TSC may induce oxidative dam-
age in the gills and ovaries, as well as a faster ROS-
dependent ovary opposite185.
The pharmaceutical, personal care products found in
the aquatic ecosystem for a decade have a potent bio-
logical effect in the non-target organism. TCS geno-
toxicity increased dose-dependent at different dose
levels TCS 0.1, 0.15, 0.2, 0.3 M used to prevent the
effect of antibacterial TCS and antibiotic trimetho-
prim (TMP). Significant DNA damage at extremely
low levels affects haemocyte functioning186. The trail
TCS was conducted on goldfish (Carassius qurtus) the
dose level (control, DMSO control, and 1

2 , 1
4 and 1/8

LC50) effect of genotoxicity and micronucleus (MN)
and nuclear abnormalities (NA) frequencies in pe-
ripheral blood. TCS 96 hmedian lethal concentration
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was 1111.9 µg/L significantly increase MN and NA
frequencies TCS cause oxidative stress and a genotox-
icity response in goldfish9.
Different doses of TCS response increased in the pro-
liferation of MCF7 DOS cells elicited by E1. The TCS
is at 76 – 87 % and 68 — 95% at the maximum level.
MCF7 Bos cell significantly increased by PFOS and
0.01 and 30 kg.ml−1 proliferative response of 116%
of the maximum E233. According to research, TCS
at 0.5 mg/L reduced the development of the unicel-
lular alga Closterium ehrenbergii and caused DNA
damage187. The MN test TCS caused substantial
DNA genetic damage in single-cell gel electrophore-
sis at all doses (1, 2, 3 M)187. TCS increases hepato-
cyte proliferation-induced fibrogenesis, produces ox-
idative stress, and boosts inflammatory response, ac-
cording to in vivo and in vitro studies using different
biomarkers188.

Micronucleus (MN)
TheMN and NA are the most significant cytogenetic
damage assays for genotoxicity 189. A most sensitive
method for DNA strand breakdown individual cell
genotoxicity test in fish. MN frequencies in zebrafish
subjected to the maximal TCS dosage.

Nuclear Abnormalities (NA )
The smear was fixed in absolute methanol for 10 min-
utes, air-dried, and stained with 10% Giemsa stain
for 8 minutes in a study of MN and NA. MN and
NA rates were significantly different in the TSC-
treated group190. The haemocytes’ genetic damage
was substantial at all three TCS doses, and it followed
a concentration- and time-dependent pattern. The
comet test in Artemia salina was also used to assess
TCS’s genotoxicity 191.

NOVEL TREATMENT STRATEGIES
Normal cells can convert into cancer cells due to a va-
riety of genetic and environmental factors. It causes
them to develop abnormally and propagate to many
other body areas by disrupting regular cellular mech-
anisms such as DNA synthesis, cell division, and sui-
cide, resulting in fatal disorders193. The basic can-
cer treatments are surgery, radiotherapy, chemother-
apy, and adjuvant medicines such as biological gene
or hormone therapies194. TCS’s initial particular ac-
tion strategy in prokaryotic cells was only discovered
twenty years ago when it was shown that TCS inhib-
ited fatty acid production in E. coli195. By replicating
its native substrate in vivo, TCS blocked the fatty acid
manufacturing enzyme enoyl–ACP reductase perma-
nently (Figure 2). TCS resistance in the bacteria was

also conferred by a mutant or overexposed ACP ex-
pressed by fabI. ACP be identified as an intracellu-
lar TCS goal as a result of these studies. Cerulenin,
mycotoxin effectiveness that inhibits fat formation in
inhibiting tumour development in vivo has inspired
multiple papers in favour of fat formulation suppres-
sion as a new approach for chemotherapy 196. FAS
appearance and action vary in normal and cancerous
tissues, with the latter being increased, implying a po-
tentially high therapeutic index. TCS is a good option
for chemotherapy because of its long history of human
use and widespread presence in consumer goods, as
well as promising in vivo outcomes197.
Phytoestrogens generated from vegetables and fruits
have long been considered alternative remedies for
human disorders as natural chemicals. Phytoestro-
gens as hormone replacement therapy (HRT) are
used in protracted therapies to prevent oestrogen-
responsive malignancies, such as bosom cancer198.
Polyphenolic substances, such as flavonoids, have
been shown in vitro and in vivo to limit bosom cancer
cell proliferation by challenging with 17β -oestradiol
(E2) for ER attraction sites199 as shown in Figure 2.
Further comprehensive underlying mechanisms have
to be researched as interest in phytoestrogens’ posi-
tive effects rises200. Flavonoid-based phytoestrogen
kaempferol occurs mainly in fruit and plants like ap-
ples, tomatoes, and green tea29. The anti-cancer and
osteosarcoma effect of kaempferol has been described
in current studies192. It has been reported in many
studies that extensive usage of TCS can have cancero-
genic potential, as shown in Table 1. Significant re-
search has also highlighted the mechanisms involved
in kaempferol anticancer action associated with the
cell cycle, cell death and angiogenic, inflammatory re-
actions, and oxygen radicals production201. In U-2
OS human osteogenic sarcoma cells, kaempferol also
reduced the appearance of ERK, JNK, and p38202.
Kaempferol inhibited the PI3K/Akt signal transduc-
tion by adhering directly to PI3K and inhibiting the
capabilities of AP-1, and protein kinase b (NF-β ),
which affect a variety of cellular activities such as
growth, angiogenesis, and death203. According to an
in vitro study, TCS can enhance the growth of BG-1
ovarian cancer cells by modulating the expression of
cell cycle and death genes19.
To investigate for signalling-related genes in MCF-
7 cells treated with Dimethyl sulfoxide (vehicle), E2
(109 M), TCS (106 M), and a blend of kaempferol
(50 M) and TCS, we conducted western blotting on
specimens of proteins recovered from the cells204.
Given the discoveries, E2 was up-regulated. IRS-1,
PKB, MAPK, and phosphorylated versions of IRS-1
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Figure 2: Treatment strategies of TCS. TCS inhibits the protein synthesis of pIRS-1, PKB, MAPK, and ERK. E2 ac-
tivates major proteins of ER and IGF-1R signaling pathway. TCS also inhibits enzyme enoyl-ACP reductase. So, all
treatment strategies influence the signaling pathways to keep the balance and reduce the damage.

Table 1: Studies demonstrating TCS-mediated cancer types with the underlyingmechanism

Concentration of TCS Effects References

0.0028 – 28.9 µg/ml Estradiol antagonism 26

0.00002 – 28.9 µg/mL Cell proliferation, estradiol antagonism 170

0.002 – 200 µg/mL Cell proliferation, estradiol antagonism, cytotoxicity 33

0 – 20 µg/mL FAS inhibition, reduced cell viability 35 66

0 – 100 µg/mL FAS inhibition reduced cell viability non-toxic to normal
cells

32,36

1 µM Activate transient receptor potential Ankirin-1 (TRPA-
1) in human prostate cancer stromal cells

178

0.1 – 10 µM Proliferation and anti-apoptosis inhibit ROS production 109

10 – 6 M Up regulate pIRS-1, PKB, and MAPK in breast tumor
growth

192

10, 100 and 200 mg/kg Induce mouse liver tumor via CAR and PPARα activa-
tion

147

10 - 5 – 10 - 7 M Induce proliferation of breast cancer cells through ER
pathway and activated CXCR4 receptor involved in
metastatic behavior

29
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are all expressed in phosphorylated forms (Figure 2).
The major proteins of insulin-like growth factor type
1 receptor (IGF-1R) signalling are the ERK proteins.
E2 stimulates MCF-7 cell growth through both the
ER and IGF-1R signalling pathways. E2 and TCS
were used to see how they affected IGF expression
(Figure 2). TCS, like E2, was found to exhibit an es-
trogenic effect by modulating the protein appearance
of pIRS-1, PKB, MAPK, and ERK. Kaempferol also
had an antiestrogenic impact by inhibiting the pro-
tein production of pIRS-1, PKB, MAPK, and ERK,
which were all induced by E2 or TCS30. As previ-
ously stated, changes in the result of TCS therapy are
primarily dependent on the experimental setup. Fur-
thermore, limited evidence from animal research sug-
gests that TCS treatment exacerbates the disease in the
existence of a previously established tumour29.

FUTURE PERSPECTIVE
TCS is not effectively controlled, as seen in numerous
environmental media, human bodies, and wildlife. Its
reckless usage and disposal may endanger humans
and the ecology as a whole. TCS has been demon-
strated to be harmful to a variety of cells in cell-based
investigations. Cell-based assays are time-limited and
so cannot rightly examine the consequence of persis-
tent expose. TCS recognition in human fluid or tissue
may not have been a reliable predictor of the extended
period because the evidence on its bioaccumulation in
the flesh is lacking205.
Furthermore, TCS is considered to block enzymes in-
volved in its decomposition206. There is currently a
scarcity of information about TCS’s pharmacokinetics
and pharmacodynamics. Enough knowledge would
allow for more flexibility in determining TCS’s tox-
icity. However, its anti-growth influence has been
noted in certain malignant cells, the toxicological im-
portance of TCS’ inhibitory impact on human FAS is
not fully grasped104. TCS has been found in signifi-
cant amounts inmammalian tissues, raising the likeli-
hood that themolecule has an adverse effect onmam-
malian anatomy. Its negative impact on birth resis-
tance has been documented, as clinical reports claim
it can treat human allergic skin conditions207.
TCS’s exact function in selecting antibiotic resistance
genes andmany drugs protection genetic codes in the
surroundings remains resolute. The level of the TCS
needed for ecological tolerance choices also needs to
be determined. The correlation between TCS intro-
duction and bioaccumulation in an earthly organ-
ism is still unclear208. More research is needed,
such as the movement of soil-based TCS process-
ing and earth organisms absorption, including Inver-
tebrates and slug, essential to crop production and

diet208. TCS increased MCF-7 bosom cancer re-
production via modulating cell division, death, and
tumour-linked genetic codes through nongenomic
ER signalling linked to IGF-1R signalling.
On the other hand, Kaempferol showed an anti-
proliferative effect against bosom cancer by inhibit-
ing TCS and E2-induced cancer growth by serving as
a competitor for ER and IGF-1R signaling. It’s the
first research to demonstrate that kaempferol has an-
ticancer action against the pro-cancer action of en-
dogenous oestrogen and xenoestrogen in bosom can-
cer. It also recommends kaempferol as a major drug
to modify TCS-induced malignancy hazard30. Fu-
ture research should concentrate on recognizing TCS-
controlled signaling molecules and their responsi-
bility for poisonous or preventive effects of differ-
ent cell types. The information obtained from such
revelations will be invaluable in validating therapeu-
tic strategies or developing potential TCS adjuvants
or blockers209. In ongoing studies, animal and hu-
man growth investigations and mammalian experi-
ments with susceptible endocrine/reproductive out-
comes should be included. Systematic evaluations
of these areas, particularly through deriving human
health risk inferences from TCS consequences, can
enable upcoming studies and regulations to safeguard
people’s health more efficiently 210.

CONCLUSION
TCS is a synthesized antimicrobic that has been used
in humans for a long time. Humans are subjected
to TCS as a result of environmental and consumer
good consumption. TCS exposure can cause var-
ious problems, including thyroid dysfunction, liver
tumorigenesis, endocrine disruption, growth issues,
muscle weakness, and oxidative stress. It is also nec-
essary to estimate the TCS level required for tolerance
choice in environmental groups. Precocious puberty
and carcinogenicity could be produced by receptor
overstimulation, presumably caused by the high TCS
level. TCS has been linked to allergic reactions in peo-
ple, according to certain research. TCS is a type 1
FAS enoyl-reductase inhibitor that has been proven
to be effective in cultured cells against theMCF-7 and
SK Br-3 bosom cancer cell lines. Because of its long
history of human usage and ubiquitous prevalence in
consumer items, as well as promising in vivo results,
TCS is a viable alternative for chemotherapy.
According to extensive studies, the kaempferol an-
ticancer effect has also been linked to the cell cy-
cle, cell death and angiogenic, inflammatory reac-
tions, and the formation of oxygen radicals. By ad-
hering directly to PI3K and limiting the capacities of
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protein kinase b (NF-β ) and AP-1, kaempferol sup-
pressed the PI3K/Akt signal transduction, which af-
fects a range of cellular activities such as growth, an-
giogenesis, and death. TCS’s environmental surviv-
ability in sediments demonstrates that antimicrobial
compounds can spread and endure breakdownmech-
anisms in anaerobic conditions. In addition, hydro-
gen peroxide speeds up the oxidation process. This
system contains enzymatic and nonenzymatic antiox-
idants such CAT, SOD, GPx, GR, GSH, and GST. As
a result, ecologists may examine the amount of ox-
idative stress caused in organisms exposed to spe-
cific substances by measuring antioxidant levels. The
current study’s lower GSH/GSSG levels might be ex-
plained because GSH could not be restored to its stan-
dard concentration in the liver after introducing TCS
concentrations due to impaired GPx and GR actions.

ABBREVIATIONS
2,4-DCP: 2,4-dichlorophenol; 2,8-DCDD: 2,8-
dichlorodibenzo-p-dioxin; A. difformis: An-
chomanes difformis;A. tumefaciens: Agrobacterium
tumefaciens; APND: aminopyrine N-demethylase;
AR: androgen receptor; B. subtilis: Bacillus subtilis;
β -hCG: β -human chorionic gonadotropin; CAT:
Catalase; COX-1: cyclooxygenase-1; CTD: chlori-
nated TCS derivative;D. magna: Daphnia magna;
E. coli: Escherichia coli; Enoyl-ACP: acyl carrier
protein; EE: ethinylestradiol; EMT: epithelial-to-
mesenchymal transition; ER: estrogen-receptor;
ERK: extracellular signal-regulated kinase; EROD:
ethoxyresorufin-O-deethylase; ERND: erythromycin
N-demethylase; FAS: enoyl-fatty acid synthesis;
FSH: follicle-stimulating hormone; GAPDH:
glyceraldehyde 3-phosphate dehydrogenase; GPx:
Glutathione peroxidase; GR: Glutathione reductase;
GSH: Glutathione; GSSG: Glutathione disulfide;
GST: glutathione S-transferase; HBSS: hank’s bal-
anced salt solution; HRT: hormone replacement
therapy; HS: hidradenitis suppurativa; hsp-70: heat
shock protein 70; IL-1β : Interleukin-1β ; JNK: Jun
N-terminal kinases; LFC: log2 fold change; LH:
luteinizing hormone; LPO: Lipid peroxidation; LPS:
lipopolysaccharides; M. smegmatis: Mycobacterium
smegmatis; M. tuberculosis: Mycobacterium tuber-
culosis; MAPK: mitogen-activated protein kinase;
MCF-7: Michigan Cancer Foundation-7; MDA:
Malondialdehyde; MHC-II: Major histocompati-
bility complex class II; miRNA: MicroRNA; MN:
micronucleus; MMP-13: matrix metalloproteinase-
13; NA: nuclear abnormalities; Nik: NF-B inducing

kinase; NMR: nuclear magnetic resonance; P.
aeruginosa: Pseudomonas aeruginosa; P. falciparum:
Plasmodium falciparum; PGES-1 : Prostaglandin
E synthase-1 ; PGE2: prostaglandin E2; PGI2:
prostaglandin I2; PI3K: phosphoinositide 3-kinase;
pIRS-1: phosphorylated insulin receptor substrate-1;
PKB: protein kinase B; PLA2: phospholipase A2;
PTH: parathyroid hormone; R. rubrum: Rhodospir-
illum rubrum; ROS: Reactive oxygen species; RyR1:
ryanodine receptor type 1; S. aureus: Staphylococcus
aureus; S. pneumoniae: Staphylococcus pneumoniae;
S. typhimurium: Salmonella typhimurium; SAM:
S-adenosylmethionine; SOD: Superoxide dismutase;
T. gondii: Toxoplasma gondii; T. thermopohila:
Tetrahymena thermophila; TAC: Total antioxidant
capacity; TCS: Triclosan; TK: thymidine kinase;
TLR-4: Toll-like receptor-4; TMP: trimethoprim;
TPO: thyroid peroxidase; TRPA1: Transient Recep-
tor Potential Ankyrin 1; TSN: Testosterone; UTI:
urinary tract infection; VEGF: vascular endothelial
growth factor.
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