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ABSTRACT
Introduction: Obesity is a lifestyle disease that is becoming prevalent nowadays and is associated
with a surplus in energy balance related to lipid metabolism, inflammation and hypoxic condition,
resulting in maladaptive adipose tissue expansion. This study used the publicly available gene
dataset to identify a small subset of important genes for diagnostics or as potential targets for
therapeutics. Methods: Chemometric analyses by principal component analysis (PCA), random
forest (RF), and genetic algorithm (GA) were used to identify 50 genes that differentiate adipose
samples fromhigh-fat diet- and normal diet-fedmice. The first 30 important geneswere studied for
classifying the samples using six different classification techniques. Gene ontology (GO), pathway
analysis, and protein-protein interaction studies on the 50 selected genes were subsequently done
to identify important functional genes. Finally, gene regulatory effects by microRNA were assessed
to confirm the genes' potential as targets for new therapeutic drugs. Results: The genes identified
by RF are best for differentiating the samples, followed by PCA, with the least predictability shown
by genes chosen by GA. However, PCA identified more genes with functional importance, such
as the hub genes ATP5a1 and Apoa1. ATP5a1 is the main hub gene, whereas Apoa1 is involved in
cholesterol metabolism. Vapa and Npc2 are crosstalk genes that link both of these main genes
and could be targeted for therapeutic drug design. Conclusion: The combination of different
chemometric techniques and functional analysis of genes could be used to select for a small
number of genes which could serve as more suitable diagnostic or therapeutic targets.

Key words: gene ontology, obesity, principal component analysis, protein-protein interaction,
random forest

INTRODUCTION
Obesity is defined as an accumulation of white adi-
pose tissue, with the disease often occurring together
with hyperglycemia, hypercholesterolemia and hy-
pertension; this cluster is often termedmetabolic syn-
drome1. Data analysis between 1980 and 2015 from
68.5million persons showed an increasing prevalence
of obesity and overweight condition in children and
adults. In 2015, approximately 108 million children
and 604 million adults were designated as obese 2.
Adipose tissue plays a key role in systemic en-
ergy homeostasis; indeed, any dysfunction involving
adipocytes, such as hypertrophy, fibrosis, hypoxia and
robust inflammation, is known to contribute to obe-
sity 3. The wide imbalance between energy intake and
expenditure in obesity results from a combination of
genetic, epigenetic, physiological, behavioral, socio-
cultural and environmental factors which make the
diagnosis andmanagement of obesity difficult4. Obe-
sity can be divided into monogenic or polygenic obe-

sity, with the monogenic type being further classified
as syndromic or non-syndromic. People with mono-
genic obesity represent only a small percentage of the
obese population, whereas common obesity with no
obvious Mendelian inheritance pattern is polygenetic
and highly prevalent5. It has been mentioned that
for any disease, one of the greatest challenges lies not
in the identification of association genes but in as-
certaining the molecular mechanisms by which those
factors/genes reduce the disease risk or phenotypic
expression6.
The explosion of genomic data in terms of expres-
sion levels of thousands of genes from microarray
studies, combined with chemometric and bioinfor-
matic tools, has enabled the identification of candi-
date biomarker genes and pathways. The aim of the
study was to use chemometric analyses of principal
component analysis (PCA), random forest (RF), and
genetic algorithm (GA) to identify a small fraction of
genes that differentiate high-fat diet- and normal diet-
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fed adipose samples from mice using the microar-
ray dataset GSE39549. Various classification tech-
niques were used to check which set of genes are best
for classification purposes, whereas the underlying
mechanisms were studied using functional gene an-
notation, pathway analysis, protein-protein interac-
tion, and miRNA regulation.

MATERIALS - METHODS
Overview of Methods
The methods’ workflow consisted of dataset selection
and pre-processing, selection of genes by three mul-
tivariate techniques, and evaluation of the classifica-
tion accuracy of the selected genes. In addition, eval-
uations of the biomechanism of the genes and their
potential clinical significance, functional annotation,
protein-protein interaction, and miRNA-target gene
interactions were conducted.

Data retrieval and pre-processing
The Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/gds), a public functional genomics
data repository, was searched for ‘obesity’ and the
choice of the dataset was based on an adequate num-
ber of samples. The chosen dataset of GSE 39549 was
downloaded from the Gene Expression Omnibus to
gain insight into the relationship between obesity and
hypoxia. This dataset consisted of both adipose and
liver samples from mice fed with a high-fat diet and
the corresponding control diet 7. The data used in this
study consisted of gene expression data from the adi-
pose samples. Microsoft Access was used to map the
probe sets of the genes (which were differentially ex-
pressed by more than 2.0-fold) to Entrez Gene IDs,
and the average expression values8,9 of 15.000 genes
were obtained. The original data consisted of differ-
ent time points but in this study the data were pooled
to compare the high-fat diet and control/normal diet.
This helped overcome the dimensionality problem as-
sociatedwithmicroarray datawhere variables are very
large but the number of samples is limited.

Software and packages
Three approaches were used to carry out the selection
of genes. In the first approach, the free R package
with prcomp as well as randomForest libraries were
used for selecting genes by PCA and RF; conversely,
GA was undertaken using Matlab R2019b. The se-
lected variables or genes’ ability to classify the sam-
ples was further carried by the use of glm and e1071
libraries in the R package. The network analysis and
visualization were carried out using Cytoscape 3.72

and related apps which were downloaded from the
Cytoscape website (https://cytoscape.org/). The anal-
yses were all carried out on an Intel® CoreTM i5-7400
CPU@ 3.0 GHz with 16.0 GB RAM.

Gene selection algorithms

The PCA was carried out using the prcomp function
in the R program. The RF method has only a cou-
ple parameters which need to be chosen (mtry and
ntree). The mtry was set to 120 and ntree was set
to 1000. The GA was carried out with Matlab using
the approach described previously10,11. The parame-
ters chosen were the number of chromosomes of 100,
ndims of 3, and the algorithm was run for 400 gen-
erations. The number of genes selected from each
chemometric method was 50.

Use of machine learning for classification

The gene selection method had chosen 50 genes from
either PCA, RF or GA, and the ability of the first 30
genes from each were selected for differentiating be-
tween the high-fat diet and control diet. The cor-
rect classifications were predicted using six differ-
ent supervised chemometric techniques, which con-
sisted of k-nearest neighbors (kNN), logistic regres-
sion, linear discriminant analysis, Naïve-Bayes, and
two types of singular vector machines (SVM) 12,13.
The first SVM evaluator used was a non-kernel or
linear-based method, whereas the second SVM used
was the sigmoid-based kernel. The other parameters
chosen for the above techniques were k = 5 for kNN,
as well as use of the binomial option for logistic re-
gression.

Functional enrichment and pathway analy-
sis (Functional annotation clustering)

Functional enrichment analysis was carried on the
genes chosen by the three methods by loading the se-
lected genes into the Functional Annotation tool in
the Database for Annotation Visualization and Inte-
grated Discovery (DAVID; https://david.ncifcrf.gov/
) to identify Gene Ontology (GO) functions, espe-
cially those pertinent to biological processes, molec-
ular functions and cellular components. A total of 50
chosen genes by each method was evaluated for func-
tional annotation, and the similarity term overlap was
set to 3. The similarity threshold was 0.50, whereas p-
value < 0.05 was used to obtain the optimal and sta-
tistically significant results. The enriched pathways
of the genes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database were also evaluated 14.
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Protein-protein interactions
The genes identified by the three methods were sub-
jected to STRING (Search Tool for the Retrieval of
Interacting Genes; https://string-db.org/) database to
identify protein-protein interactions in adipose sam-
ples from high-fat diet. The confidence score of >0.4
was used to identify the protein-protein interaction
networks, and the disconnected nodes were hidden
in the network to simplify the resulting display15.
The active interaction sources were chosen to include
“textmining, experiments, databases, co-expression,
neighborhood, gene fusion, and co-occurrence”. The
network obtained was downloaded as tab-separated
values (tsv) and processed further in Cytoscape 3.72.

TheassociatedmiRNA-generegulatorynet-
work in humans
The genes chosen by the three different multivariate
analyses also showed protein-protein interactions and
were further assessed for biological meaningfulness
by studying the regulatory aspect of the associated
human genes by human microRNA (miRNA). The
human protein-protein network associated with the
mice proteins was obtained by using the STRINGIFY
network function of the STRING app in Cytoscape.
The miRNA-gene regulatory network in humans was
obtained by extending the previous human protein-
protein interaction network with CyTargetLinker16.
The miRNA database chosen for this was the exper-
imentally validated database of miRTarBase (version
4.4).

RESULTS
Differential genes between a high-fat diet
and a normal diet
The PCA showed that principal component 1 (PC1)
contributed 38.2% of the overall variance and PC2
was responsible for the remaining 17.0%, whereas a
total of eight principal components were required to
achieve the cumulative proportion of variance of 90%.
The 30 genes which had the highest loading or weigh-
tage for the first principal components were chosen
for usage in classification. From their ENTREZ ID,
the first six of them were identified as Mup3, Mup2,
Mup1, Aldh6a1, H2-Aa and Acadsb. The mean de-
crease in the RF accuracy optionwas used to select the
30 most important genes, which were differentiated
between samples from a high-fat diet and those from
a normal diet. The first six of these genes were Lilrb4a,
Tef, Cdt1,Adam17,Gas7, andMlxipl. The RF used for
the selection of genes had the added advantage of also
classifying the samples. It had an out-of-bag (OOB)

error rate of 15%. Additionally, 9 out of the 10 (or
90%) of the test sampleswere classified correctlywhen
mtry of 120 and ntree of 1000 were used. The GA had
to be run for 400 generations in order to pick relevant
genes that had higher loads by singular vector decom-
position; once again, 30 genes were chosen for classi-
fication. The first six genes were identified by their
ENTREZ GENE ID as Hoxa3, Igf2r, Rassf4, Armcx1,
Klf4 and Galr3.

Evaluation of classification performance
The genes selected by RF to differentiate between adi-
pose samples from mice on normal diet or high-fat
diet were tested with the six different chemometric
techniques. RF gave the best correct classification
compared to PCA and GA. The genes selected by RF
were classified correctly in 58 out of 70 (83%) tested
samples. The genes selected by PCA showed 74% cor-
rect classification, and those selected by GA showed
73% correct classification. The Naïve Bayes had the
highest correct classification among the individual
classification techniques as the three sets of variables
had values of 85% each, and SVM using radial kernel
had the next highest.

Gene ontology and pathway analyses
The functional annotation of genes using an online
DAVID database showed that the genes obtained by
PCA were more associated with GO terms of molec-
ular functioning, biological processes, and cellular
components related to lipid metabolism, as compared
to the two other selection methods. The related GO
terms, percentage of genes identified, and P-values
are shown in Table 1. The genes chosen by PCA that
are associated with GO annotations of ‘insulin acti-
vated receptor activity’ to ‘negative regulation of lipid
metabolic processes’, as shown in Table 1, are the fol-
lowing: Mup1, Mup2 and Mup3. The three genes
associated with GO annotation linked with choles-
terol, such as ‘cholesterol transport’ to ‘cholesterol
metabolic process’ are Apoa1, Apoa2 and Npc2. The
genes chosen by RF had one term directly related to
obesity: the GO term of ‘lipid metabolic process’; the
five genes associated with it are sphingomyelin phos-
phodiesterase 3 (Spmd3), ATP citrate lyase (Acly),
Spmd13b, 1β -Hydroxysteroid dehydrogenase type 1
(Hsd11b1) and alpha/beta hydrolase domain contain-
ing 3 (Abhd3). The genes obtained by GA did not
have any GO term related to molecular function or
biological function, but the term ‘extracellular exo-
some’ under cellular component was the only term
with an enrichment score above the value of 1 and
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a probability value under 0.05. The three genes out
of nine associated with the term are Aldh16a1, Igf2r,
and Hsp90aa1. The KEGG analysis revealed that
only genes selected by PCA were significantly en-
riched. The two pathways that were enriched were
mmu03010 (ribosome underclass of translation in ge-
netic information processing) and mmu00280 (va-
line, leucine and isoleucine degradation underclass of
amino acid metabolism).

Protein-protein interaction and hub genes
The network of protein-protein interactions showed
that the 50 genes chosen by PCA exhibited a wide net-
work, whereas the genes chosen by GA were least ex-
tensive. The interaction between genes was regarded
as positive when having a combined score of ≥ 0.4.
The network for the PCA chosen genes is shown in
Figure 1. Among the genes chosen by PCA, two genes
are considered as hub genes in the protein-protein in-
teraction network, with Atp5a1 having nine degrees
of connectivity while ApoA1 having slightly less con-
nectivity at six degrees. The network from RF and
GA chosen genes is less extensive and shown in Fig-
ure 2and Figure 3. The biggest network consisting of
seven members for RF-selected genes consisted of the
hub gene Plk1 with five connections. The GA cho-
sen genes had two networks composed of four genes,
and one of them was a linear network consisting of
four genes, with two of the members being Igf2r and
Hsp90aa1.

Regulation of target genes bymicroRNA
Theuse of the Stringify function of Cytoscape enabled
identifying similar protein-protein interactions in hu-
mans, along with the use of CyTargetLinker to pre-
dict the miRNA-gene regulatory interactions of these
proteins. The genes selected by PCA which showed
protein-protein interactions in humans had a total of
578 miRNA regulating the genes, with ATP5A1 and
RPL18A being regulated by the greatest number of
miRNAs (which was 85). The number of miRNAs
regulating the genes with protein-protein interactions
chosen by RFwas 390, whereas for GA, the number of
miRNAs was at least 356 for the 16 genes with pro-
tein interactions. One of the genes chosen by GA,
HSP90AA1 was regulated by a total of 100 miRNAs.

DISCUSSION
The use of data mining techniques combined with
bioinformatics has facilitated finding biological
meaning in large molecular datasets to diagnose,
understand the underlying pathogenesis, and provide

insight to develop treatments for various diseases.
This study has compared the use of PCA, RF and GA
to identify genes that differentiate adipose samples
from high-fat diet treatment, compared to control,
to understand the underlying biological mechanisms
of obesity. The biological and molecular functions
of each set of chosen genes were studied using
gene annotation, pathway analysis, protein-protein
interaction, and gene regulation.
There are various approaches to selecting the relevant
genes. The choice of selecting the smallest number
of ‘principal gene components’ that best explain the
experimental data is often used for PCA, but in this
study, the decision was to choose the first principal
component only17. This decision was based on the
fact that the first principal component explained the
more than double variance percentage compared to
the second component. Based on this, the genes that
had the highest loading or weightage for this compo-
nent were chosen for differentiating the samples.
Moreover, it was found that choosing principal com-
ponent two for selection of the important genes gave
less correct classification, and the geneswere less asso-
ciated with GO terms associated with fat metabolism.
PCA usage to select genes does not involve parame-
ters that need to be optimized, but for GA the number
of generations to be run and the number of chromo-
somes used can be varied. In this study, many genera-
tions were chosen such that the loads obtained for the
variables show few characteristic peaks having higher
values than other variables.
This study aimed to investigate the underlying mech-
anism regarding obesity, but if the choice were only
for diagnosis, then RF alone would have sufficed. This
is because RF functions as a wrapper approach where
the genes selected are evaluated for accuracy of the
classification at the same time. The selection of genes
by RF was from using the decrease in accuracy as this
has been mentioned to be better than a decrease in
Gini index18. However, it should be noted that most
of the genes selected by a decrease in accuracy were
also selected by Gini index, with the difference be-
ing only the selected genes’ ranking. The approach of
PCA is a filtermethod that conducts the first selection
of genes, with the selected genes having to be classified
with other statistical techniques. It should be noted
that the three techniques of PCA, RF and GA did not
include any genes among the 50 chosen genes that
were associated with obesity or hypoxia (a causative
risk factor), such as FTO, LEP, HIF-2, NFκB, PPAR
and NPC13,19–21. However, NPC2 was among the
first 30 genes chosen by PCA for differentiating be-
tween a high-fat diet and normal diet treated adipose
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Figure 1: Protein-protein interactions among genes chosen by principal component analysis.

samples. Dysfunction in either NPC1 or NPC2 pro-
tein leads to an altered storage pattern of cholesterol
and sphingolipids in late endosomes/lysosomes 22.
Hypoxia in humans affect the expression of MMP2
and MMP9 in adipocytes20, and although both these
genes were not among the genes selected by the three
methods, the related geneMmp13 was selected by RF.
MMP13 codes for collagenase 3 in humans, which de-
grades the extracellular matrix 23. As Mmp13 is re-
lated to Mmp9, which is related to hypoxia, it can be
noted that the combination of the different selection
methods could identify different causative or related
factors of a disease. The number of genes selected
to be used for classification was limited to 30. The
value of correct predictions was obtained by pooling
six classification techniques, such as a technique that
would provide bias24,25.
The number of genes selected for GO and the study
of pathogenesis was increased to 50 as 30 genes used
for classification were not enough to obtain biological
meaning or provide an elaborate network of interac-
tions. The number of genes used for gene annotation
and the biological processes identified was less than
that in previous publication7, but the core processes
involving lipid metabolism were identified. The use

of the smallest possible set of genes is advantageous
in the clinical setting for diagnostic purposes and in-
vestigating disease mechanisms26,27.
The genes picked up by using the accuracy function of
RF obtained fewer GO terms, but some of them, such
as lipid metabolic process, had more genes coding for
important proteins (e.g. sphingomyelin phosphodi-
esterase 3 and acid-like 3B). Proteins closely related
to both of these, such as SMPDL3A and SPMD1, have
been reported to have a role in cholesterol efflux28,29.
The functional enrichment studywithGA genes iden-
tified only one GO term related to extracellular exo-
some. The combination of the KEGG pathway and
GO terms with protein-protein interaction networks
suggests important genes for system-level regulation
of cellular processes. The genes Vapa and Npc2 seem
to be a bridge that links the hub genes ATP5a1 and
Apoa1. ATP5a1 seems to link the protein cluster of
Rp18a, Mrp120, Rps3a1 and Rps3, which involves the
KEGG pathway of the ribosome with the pathway
of acid amino degradation (mmu00280)-associated
genes, such as Acadsb, Aldh6a1, and Hadhb. As the
Apoa1 gene seems to be involved in cholesterol trans-
port, efflux and homeostasis, Vapa and Npc2 can be
regarded as crosstalk genes which link the above three
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Figure 2: Protein-protein interactions among genes chosen by random forest with accuracy function.

processes. The interaction between these genes also
occurs in humans, with miRNAs regulating the hu-
man genes. For instance, the human gene VAPA
is regulated by 24 miRNas, whereas has-mIR-92a-3p
regulates NPC2. Both these genes could be potential
targets for studies of drug intervention. It has to be
highlighted that although GA did not identify many
protein-protein interactions, the genes identified by it
have been reported to be potential targets. For exam-
ple, the IGF2R-mIR-143-3p interaction has been re-
ported to be a potential target of obesity-associated
insulin resistance30.
In the present study, the number of samples from
which the data was obtained is still small, and a larger
sample would have avoided the need to pool the dif-
ferent time points. Secondly, due to the complexity of
the molecular mechanisms regulating disease devel-
opment, the choice of only 50 genes for each chemo-
metric technique made a more comprehensive evalu-
ation of mechanism difficult for the genes chosen by
RF and GA. Finally, as some of the interactions were
predicted through data mining techniques, the use of
in vitro or in vivo work to confirm the findings would
be warranted in future studies.

CONCLUSION
The analysis of multivariate data in this study showed
that the selection of genes for classification purpose,
diagnosis, and elucidation of disease mechanisms
could involve different chemometric techniques. The
genes selected could be studied further using func-
tional analyses such as GO, pathway analysis, and
gene interactions to obtain an overall greater under-
standing. In this study, RF was better for classifica-
tion purposes, whereas genes selected by PCA, such
as Atp5a1, Apoa1, Vapa and Npc2, were more appro-
priate for showing, generally, the protein-protein in-
teractions and, more specifically, the disease mecha-
nisms.

ABBREVIATIONS
Acadsb:acyl-Coenzyme A dehydrogenase,
short/branched chain*
Adam17: a disintegrin and metallopeptidase domain
9*
Aldh6a1: aldehyde dehydrogenase family 6, subfam-
ily A1 *
Apoa1: apolipoprotein A-I*
Apoa2: apolipoprotein A-II*
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Figure 3: Protein-protein interactions among genes chosen by genetic algorithm.

Armcx1: armadillo repeat containing, X-linked 1*
ATP5a1: ATP synthase, H+ transporting, mitochon-
drial F1 complex, alpha subunit 1**
Cdt1: chromatin licensing and DNA replication fac-
tor 1*
DAVID: Database for Annotation, Visualization and
Integrated Discovery
FTO: FTO alpha-ketoglutarate dependent dioxyge-
nase*
GA: genetic algorithm
Galr3: galanin receptor 3*
Gas7: growth arrest specific 7*
GEO: Gene Expression Omnibus
GO: gene ontology
H2-Aa: histocompatibility 2, class II antigenA, alpha*
Hadhb: hydroxyacyl-Coenzyme A dehydrogenase/3-
ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A
hydratase (trifunctional protein), beta subunit*
HIF-2: hypoxia inducible factor 2**
Hoxa3: homeobox A3*
Igf2r: insulin-like growth factor 2 receptor*
KEGG: Kyoto Encyclopedia of Genes and Genomes
Klf4: Kruppel-like factor 4*
kNN: k-nearest neighbours
LEP: leptin**

Lilrb4a: leukocyte immunoglobulin-like receptor,
subfamily B, member 4A*
miRNA: microRNA
Mlxipl: MLX interacting protein-like*
Mmp13: matrix metallopeptidase 13#
MMP2: matrix metallopeptidase 2**
MMP9: matrix metallopeptidase 9**
Mrp120: mitochondrial ribosomal protein L20#
Mup1: major urinary protein 1*
Mup2: major urinary protein 2*
Mup3: major urinary protein 3*
NFκB: nuclear factor kappa B**
NPC1: Niemann-Pick type C1**
Npc2: Niemann-Pick type C2#
PC: principal component
PCA: principal component analysis
PPAR: peroxisome proliferator activated receptor**
Rassf4: Ras association (RalGDS/AF-6) domain fam-
ily member 4*
RF: random forest
Rp18a: ribosomal protein L8a#
Rps3: ribosomal protein S3#
Rps3a1: ribosomal protein S3A1#
SMPDL3A: sphingomyelin phosphodiesterase, acid-
like 3A##
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SPMD1: sphingomyelin phosphodiesterase 1##
STRING: Search Tool for the Retrieval of Interacting
Genes
SVM: singular vector machine
Tef : thyrotroph embryonic factor*
Vapa: vesicle-associated membrane protein, associ-
ated protein A#
(*: mouse gene; **: human gene; #: mouse protein,
##: human protein)
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