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ABSTRACT
Background: Diabetes mellitus (DM) is a metabolic disorder that is characterized by hyper-
glycemia and glucose intolerance, which is associated with impaired insulin secretion, peripheral
sensitivity and eventual β -cell dysfunction. This review aimed to summarize the major metabolic
pathways leading to both microvascular and macrovascular complications in DM, with an empha-
sis on the enzymes involved and potential inhibition of the enzymes facilitating these processes
as a measure of diabetic control. Methods: Data for this review were sourced online from scien-
tific search engines, including Google Scholar, Scopus, EMBASE, PubMed, ResearchGate, Mende-
ley, Medline and SpringerLink, using keywords such as 'diabetic complications', 'hyperglycemia-
induced diabetic mechanisms', 'diabetic enzymes', and 'diabetic enzyme inhibitors'. A total number
of 109 references published online between 1990 and 2020 were generated and cited in this re-
view. Results: Themost scourging and dilapidating effects of DM, as well as its associated vascular
complications, are classified into four categories, viz.: nephropathy, retinopathy, neuropathy, and
cardiovascular disease. Hyperglycemia, which is associated with uncontrolled DM, elicits abnormal
metabolism such that the enzymes involved inmetabolic events leading to diabetic complications
are expressed and amplified. The disorders associated with DM are linked to various metabolic
pathways facilitated by enzymatic activities of the polyol pathway, hexosamine biosynthetic path-
way, andglucose autoxidation. Also, the disorders are linked to increased synthesis of advancedgly-
cation end-products (AGEs), hexokinase-2 driven glycolytic overload, as well as increased activities
of cyclooxygenase (COX), lipoxygenase (LOX) and pyruvate kinase (PKC) enzymes. The inhibition
of the enzymes involved in these pathways could serve to mitigate and arrest diabetic complica-
tions. Conclusion: Thus, suitable inhibitors for enzymes involved in DM metabolic events could
serve as panaceas against DM complications, possibly adding to the growing list of new and more
efficacious antidiabetic drugs.
Key words: Diabetes mellitus, diabetic complications, enzyme, hyperglycemia, inhibitor

INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder that
is characterized by hyperglycemia and glucose intol-
erance. It is known to be associated with impaired
insulin secretion and peripheral sensitivity, as well
as eventual β -cell dysfunction1. DM is one of the
oldest diseases worldwide2. The International Dia-
betes Federation report of 2017 suggested that 451
million adults globally had diabetes in 2017, and 693
million individuals are expected to suffer from DM
by 20453. The World Health Organization (WHO)
also estimates that more than 19% of the world’s to-
tal adult population will suffer from DM by the year
20304. DM has been a problem of great concern over
the years due to its high incidence andmortality rates,
as well as its high management and treatment costs3.
DM disorders are more rampant in developing na-
tions, with more than half of the total cases undiag-
nosed 1.

DM is classified into type 1 and type 2. However,
DM can also occur during pregnancy- a type known
as gestational DM. Other circumstances- such as in-
sulin receptor impairment, pancreatic exocrine dis-
order, genetic disorders, and endocrinopathies- can
provoke DM2. Clinically, type 1 DM presents as hy-
perglycemia as a result of acute or chronic insulin de-
ficiency in plasma5. In type 2 DM, the β -cells within
the islets of Langerhans of the pancreas are hypersen-
sitive to glucose in plasma, thereby eliciting the secre-
tion of higher than normal insulin levels in the sys-
temic circulation. The evidence of hyperinsulinemia
is an attempt to counterbalance hyperglycemia, which
further deteriorates and impairs β -cell function6,7.
Chronic hyperglycemia is accompanied by high mor-
tality and morbidity due to its concomitant microvas-
cular complications, such as nephropathy, neuropa-
thy and retinopathy, as well as macrovascular compli-
cations which include cardiovascular diseases leading
to myocardial infarction and stroke2,8.
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Hyperglycemia, which is associated with uncon-
trolled DM, elicits abnormal metabolism such that
the enzymes involved in the metabolic events lead-
ing to diabetic complications are expressed and am-
plified 8. Therefore, such enzymes can serve as thera-
peutic targets for the treatment of DM9. This review
summarizes the major metabolic pathways leading to
bothmicrovascular andmacrovascular complications
in DM, and highlights the potential inhibition of the
enzymes facilitating these processes as an instrument
of diabetic control.

METHODS
Evidence acquisition
Data summarized in this review were sourced
online from scientific search engines, including
Google Scholar, Scopus, EMBASE, PubMed, Re-
searchGate, Mendeley, Medline and SpringerLink,
using keywords such as ’diabetic complications’,
’hyperglycemia-induced diabetic mechanisms’, ’dia-
betic enzymes’, and ’diabetic enzyme inhibitors’. A
total number of 109 references published online be-
tween 1990 and 2020 were evaluated and cited in this
review.

RESULTS
Diabetic complications
A significant number of complications accompany
DM. However, the most dilapidating effects of DM
and its associated vascular complications are classified
into four categories, viz.: nephropathy, retinopathy,
neuropathy, and cardiovascular disease 2.

Nephropathy
Diabetic nephropathy is the main initiator of end-
stage renal failure in the Western regions of the
world10. Poor glycemic control is a risk factor for
the occurrence of diabetic nephropathy11. Clinically,
nephropathy is accompanied by an emergence of pro-
teinuria with a concomitant reduction in glomerular
filtration rate, leading to fatal uremia if not treated.
Kidney disease is also characterized bymacrovascular
complications, including strokes and heart attacks2.
According to Amico and Klein12, a rise in blood pres-
sure is also associated with the onset of nephropathy.

Retinopathy
Diabetic retinopathy is the major cause of blindness
in individuals between the ages of 20 – 74 years13,14

since it initiates an array of lesions in the retina.
It is typically characterized by vascular permeabil-
ity changes, capillary degeneration, capillary microa-
neurysms, and abnormal production of blood vessels.

Color vision deficiency is also another common effect
of retinopathy13.
According to Forbes and Cooper2, hyperglycemia in-
duces alteration in the blood-retinal barrier and its
vascular permeability at the early stages of diabetic
retinopathy. However, the visual disorders that occur
at this stage are not noticeable to most sufferers.

Neuropathy

Diabetic neuropathy involves the destruction of the
nerves and is one of the most prevalent diabetic com-
plications. More than half of diabetic patients suf-
fer from neuropathy15,16. Diabetic neuropathy is the
main risk factor for wound healing impairment com-
monly encountered in DM2. According to Obrosova
et al.17, advanced diabetic neuropathy, as a result of
impairment of the nerve fiber, leads to a total decline
in sensory perception. Other complications associ-
ated with diabetic neuropathy include erectile dys-
function, cardiovascular dysfunction, paresthesia, hy-
peralgesia and allodynia 2,17.

Cardiovascular disease

There is a high prevalence of cardiovascular disease
among individuals suffering from DM2. Cardiovas-
cular disease is responsible for more than half of the
total number of deaths recorded as a result of dia-
betic complications18. The risk of myocardial infarc-
tion among diabetic patients was equivalent to nor-
mal human subjects with a previous history of my-
ocardial infarction19. The major disorders associated
with cardiovascular disease among diabetic individ-
uals include premature atherosclerosis, accompanied
bymyocardial infarction, stroke, and cardiac dysfunc-
tion2.
Furthermore, cardiovascular disease in type 1 DM
occurs sequentially to obstruction in kidney func-
tion20,21. In the same manner, poor glycemic control
and kidney disease can provoke cardiovascular dis-
ease in type 2 DM22.

Metabolic pathways leading to complica-
tions in DM

Certain metabolic processes which are activated by
hyperglycemia have been demonstrated to induce
the complications associated with DM. These mecha-
nisms, including enzymes and their intermediates, as
well as inhibitors of these enzymes, are discussed be-
low.
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Protein kinase C (PKC) activation
ThePKC family is comprised of more than eleven iso-
forms of serine-threonine kinases which play a ma-
jor role in the modulation of endothelial cell perme-
ability, activation of cell proliferation, and vascular
growth23. PKC β is the core target in the escala-
tion of diabetic disorders24,25. The activation of PKC
β in diabetic animals and vascular cells is initiated
by hyperglycemia 24,25. An increase in blood glucose
levels is accompanied by PKC activation in various
tissues, including heart, retina, and renal glomeruli,
which eventually exacerbates diabetic complications
in both humans and animal models (Figure 1)26–28.
High blood glucose levels directly activate the polyol
pathway, whereas PKC associated with the polyol
pathway is known to induce diabetic complications.
Accordingly, the polyol pathway is linked with the
generation of oxidative stress, leading to the emer-
gence of diabetic complications as observed clinically
(Figure 2)29–31. Additionally, continuous PKC ac-
tivation stimulates different growth factors, includ-
ing transforming growth factor β , platelet-derived
growth factor, and vascular endothelial growth fac-
tor32,33.
The study carried out by Thomas et al.,34 on the
protein kinase inhibitory activity of crude methanol
extract of Bocconia frutescens using hyphae forma-
tion inhibition assay against Streptomyces 85E at 20
µg/disk concentration, yielded positive results. The
alkaloids- namely chelerythrine and berberine- were
reported in this plant extract and were responsible for
the protein kinase inhibitory effects of this plant34.

The increased flow of the polyol pathway
The polyol pathway flux consists of two key enzymes:
aldose reductase (AR) and sorbitol dehydrogenase
(SD). In the polyol pathway, glucose is reduced to
sorbitol (alcohol) by AR, followed by the oxidation
of sorbitol to fructose by SD. Both the AR- and the
SD-catalyzed steps involve using nicotinic acid ade-
nine dinucleotide phosphate (NADPH) (Figure 2)35.
The rate of the polyol pathway is dependent on the
AR step; AR possesses low glucose affinity (Km >
100 mM) in nondiabetic individuals with normal
glucose levels. Indeed, glucose metabolism via the
polyol pathway involves the utilization of a very small
amount of glucose 36.
Under hyperglycemic conditions, AR is activated by
rising intracellular glucose levels. The AR reaction
eventually leads to the generation of springy polar
sorbitol, which permeates the cell membranes, result-
ing in the distortions of cellular structure and activ-
ity, osmotic cell swelling, and reduction in ATPase

function23. The oxidation of sorbitol activates PKC
to fructose- a process catalyzed by SD- via a rise in
NADH/NAD+ ratio37. Oxidative stress is generated
in the polyol pathway via redox imbalance38,39. Thus,
the polyol pathway is associated with a vast array of
diabetic complications (Figure 2).
Emodin, aurantio-obtusin and chryso-obtusin-2-O-
β -D-glucoside, isolated from the ethyl acetate sol-
uble extract of Cassia tora seeds elicited inhibitory
effects on AR, with corresponding IC50 of 15.9,
13.6 and 8.8 µmol/L, respectively, against AR in
rat lens40. Out of six phytocompounds isolated
from Glycyrrhizae radix roots, only isoliquiritigenin
gave a strong inhibitory effect on AR as well as
blocking the buildup of sorbitol in tissues of di-
abetic rats41. According to the inhibitory study
carried out by Jung et al.,42 twelve phenolic com-
pounds were isolated from Belamcanda chinensis rhi-
zomes, among which tectorigenin and tectoridin gave
the most potent and highest inhibitory effect (IC50s
= 1.12 and 1.08 µmol/L, respectively). Phenolic
compounds blocked the accumulation of sorbitol in
streptozotocin-induced diabetic rats within a period
of 10 days at a dose of 100 mg/kg 42. The AR in-
hibitory effect of luteolin isolated from Chrysanthe-
mum boreale at IC50 was 0.5 µmol/L43. The phy-
tocompound, 3, 5-dicaffeoylquinic acid (chlorogenic
acid derivative), from Ipomoea batatas roots produced
a substantial inhibitory effect on AR from rat lens44.
Other phytocompounds with AR inhibitory effect in-
clude isoaffinetin fromManilkara indica45, rhetsinine
from hot water extract of Euodia rutaecarpa46, mat-
teuorienate A and B from Matteuccia orientalis rhi-
zome47, puerariafuran from Pueraria lobata48, and
hypolaetin from Sideritis brevibracteata n-butanol ex-
tract49.

The increased flow of the hexosamine
biosynthetic pathway
The contribution of the hexosamine biosynthetic
pathway in the emergence of insulin resistance, as
well as diabetic vascular complications, has been re-
ported1,51. This pathway involves the conversion
of fructose-6-phosphate (fruc-6-P) to glucosamine-
6-phosphate (glucN-6-P) using glutamine as the
amino donor. The conversion of fruc-6-P to
glucN-6-P is catalyzed by glutamine: fructose-6-
phosphate-amidotransferase (GFAT), which is the
rate-limiting enzyme of the hexosamine biosyn-
thetic pathway. GlucN-6-P is instantly channeled
towards the synthesis of uridine-5-diphosphate-N-
acetylglucosamine (UDP-N-acetylglucosamine). The
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Figure 1: Diabetic complications arising from the activation of PKC β 29–33 .

UDP-N-acetylglucosamine is the precursor for the
biosynthesis of the necessary amino sugars required
for the generation of glycoproteins, proteoglycans,
glycosaminoglycans, and glycolipids51–53. Extremely
high blood sugar levels induce the development of di-
abetic complications through the elevation of fruc-
6-P concentration, which flows into the hexosamine
biosynthetic pathway54,55. However, increased blood
glucose concentration induces metabolic pathways
that eventually promote the release of cytokines such
as TGF-β , ICAM-1, VCAM-1, TNF-α , CTGF and
PAI-1, involved in various diabetic complications
(Figure 3)56,57. For instance, transforming growth
factor-β1 (TGF-β1) plays a significant role in diabetic
nephropathy51. Upon cellular glucose uptake, rel-
atively larger glucose concentrations are catabolized
and channeled towards glycogenesis, glycolysis, and
pentose phosphate metabolism. Moreover, about 2-
3% of glucose molecules are channeled into the hex-
osamine biosynthetic pathway57,58.
Nevertheless, the inhibition of the rate-limiting en-
zyme, GFAT, of the hexosamine biosynthetic path-
way blocks the hyperglycemic-induced transcription
of the cytokines, thereby preventing the various dia-
betic complications which might possibly arise from

the pathway51,53,54,59.
The photo components present in fenugreek ex-
tracts possess an inhibitory effect against the rate-
limiting enzyme pathway of the hexosamine biosyn-
thetic pathway60. Diabetic mice fed with fenugreek-
containing food showed an inhibited GFAT activity,
whereas those given starch diets without fenugreek
exhibited an increase in GFAT activity compared with
the control group60. The anti-hyperglycemic potency
ofEuphorbia thymifolia via the inhibition ofGFAThas
also been reported. The following phytocomponents
from E. thymifolia, namely β -amyrin, taraxerol, 1-O-
galloyl-β -D-glucose, corilagin, cosmosiin, quercetin-
3-galactoside, and quercitrin, all exhibited inhibitory
efficacy against GFAT with an absolute binding en-
ergy of > 8 kcal/mol61.

Increased synthesis of advanced glycation
end-products ( AGEs)

AGEs are yellowish-brown fluorescent substances.
They are generated via the Maillard reaction. Specif-
ically, they are produced via the non-enzymatic re-
action between reducing sugars (e.g., glucose) and
the amino group of proteins, leading to synthesis of
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Figure 2: The polyol pathway of glucosemetabolism (Modified from: 50).

a Schiff base. The resultant adducts are transiently
converted to amadori compounds63. The amadori
adducts undergo irreversible dehydration and con-
densation reactions to yield AGEs63,64. AGEs are
also synthesized from dicarbonyl compounds such as
methylglyoxal, 3-deoxyglucosone, and glyoxal, which
are outcomes of glucose autoxidation and degrada-
tion (Figure 5). Indeed, α-hydroxy aldehydes (in-
cluding glycolaldehyde and glyceraldehyde) are also
precursors for AGE synthesis65,66. It has been shown
that there is increased synthesis and accumulation of
AGEs under chronic hyperglycemic conditions, lead-
ing to diabetic vascular complications63.
The presence of AGEs induces the expression of AGE
receptors. The interaction between AGEs and their
receptors elevates cellular generation of oxidative
stress, enhances the release of cytokines and growth
factors via nuclear factor κB activation, and stimu-
lates adhesion factors, all of which eventually lead to
inflammatory response 67. This interaction between
AGEs and their receptor can furthermore escalate ar-
teriosclerosis progression (Figure 4)64,68. Aggrava-
tions of pathological angiogenesis, reduction in fib-

rinolytic activity, unstable angina, and/or acute my-
ocardial infarction are other complications associated
with an increase in AGE levels69–71.
Drugs such as atorvastatin, pravastatin, telmisartan,
ramipril, rosiglitazone, exendin-4 and aminoguani-
dine have been reported to elicit modulatory effects
on the diabetic complications caused by AGEs 72–78.
Atorvastatin, an antioxidant, is known to block the
production of AGEs 76. Pravastatin is involved in re-
ducing tubular cell destruction in diabetic nephropa-
thy and mitigates cell apoptosis initiated by the
AGEs78. The expression of the AGE receptor was
blocked by telmisartan in renal mesangial cells, en-
dothelial cells, and liver cells74. Telmisartan also ame-
liorates the production of oxidative stress, inflam-
mation, and arteriosclerosis associated with AGE ex-
pression74,77. Previously, it has been reported that
ramipril elicits similar effects as telmisartan75. In ad-
dition, rosiglitazone mitigates the expression of AGE
receptor, while exendin-4 inhibits the development of
diabetic nephropathy by blocking the interaction be-
tween AGEs and their receptors in tubular cells. The
inhibition of AGE formation by aminoguanidine has
also been reported72,73.
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Figure 3: The hexosamine biosynthetic pathway showing the production of the cytokines including TGF-
β , ICAM-1, VCAM-1, TNF-α , CTGF, PAI-1, involved in various diabetic complications (Modified from: 62).
GFAT: glutamine: fructose-6-phosphate-amidotransferase; Glu: glutamate; Gln, glutamine; OGT: O-linked N-
acetylglucosamine (O-GlcNAc) transferase; UDP: uridine diphosphate.

Glucose autoxidation
Hyperglycemia exacerbates the glucose autoxidation
process, which leads to the production of harmful re-
active species and ketoaldehyde compounds. Specifi-
cally, peroxide (H2O2) and malondialdehyde are gen-
erated through this mechanism79.
Hyperglycemia increases the levels of reactive car-
bonyl species, such as methylglyoxal and glyoxal, as
a result of glucose autoxidation54,80. These reac-
tive carbonyl species can preferentially undergo re-
activity with arginine and lysine at relatively high
rates (Figure 5), thereby provoking DM pathogene-
sis. Most of the protein binding sites consist of a large
number of arginine residues81,82. Furthermore, this
metabolic process is also linked with the release of
AGEs 82.
Generally, the aldehyde group of glucose under-
goes reactivity with the ε-amino groups of lysine
residues and the N-terminal α-amino groups of pro-

teins to produce a Schiff base. Subsequently, it un-
dergoes rearrangement to yield an amadori interme-
diate. The amadori intermediate is further rearranged
for the synthesis of heterogeneous AGEs. The argi-
nine residues of proteins are structurally altered by re-
active carbonyl species (Figure 5)82.

Increased expression of cyclooxygenase
(COX)
Over the years, COX has been known to exist in the
cells of mammals in only two isoforms, namely COX-
1 and -283. However, a third isoform known as COX-
3 was recently established, although its clinical signif-
icance has not been fully confirmed 84. COX-1 is the
most abundant isoform and occurs in almost all tis-
sues83. COX-2 is released in trace amounts and is in-
duced by growth factors, PKC activation, inflamma-
tory cytokines, oxidative stress, and tumor promot-
ers85–87.
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Figure 4: Advanced glycation end-products (AGEs) mechanism in diabetic vascular complications (Modi-
fied from:64). RAGE: advanced glycation end-product receptor;NF-κB: nuclear factor κB; IL: interleukin; TNF-α :
tumor necrosis factor α ; ROS: reactive oxygen species; eNOS: endothelial nitric oxide synthase; NADPH: nicoti-
namide adenine dinucleotide phosphate.

An increase in COX-1 levels has been linked with DM
onset, resulting in heart-related disorders with high
mortality rates88. Furthermore, increased expression
and activation of COX-2 have been linkedwith hyper-
glycemia through glucose autoxidation and AR path-
way activation. This pathway is accompanied by sec-
ondary NADPH and NAD+ reduction, activation of
PKC, stimulation of advanced glycated end-products
receptor (RAGE), as well as elevation in reactive oxy-
gen species generation (ROS) (Figure 6)83. Accord-
ing to a study carried out by Guo et al.,89 using type 2
diabetic mice, high COX-2 level was observed in the
vascular smooth muscle cells of the mice. An eleva-
tion in the abundance of COX-2 in coronary arterioles
was also observed and confirmed in diabetic human
subjects 90,91. High COX-2 level in the podocytes was
also observed and subjected the kidneys to diabetic

glomerular injury through a (pro) renin-associated
mechanism92.
Inhibition of COX-2 expressionwas reported to arrest
nephropathy in diabetic subjects 93–95. In a related
study, the inhibitory action of nimesulide against
COX-2 improved endothelial dysfunction in the hind
limb vasculature of streptozotocin-induced diabetic
rats96. The inhibitory effect of nonsteroidal anti-
inflammatory drugs onCOXactivity has also been ex-
tensively reported97,98.

Activation of lipoxygenase (LOX)
Lipoxygenases (LOX) is a family of enzymes typ-
ically characterized by non-heme iron-containing
structures and is involved in the catalysis of polyun-
saturated fatty acid deoxygenation arachidonic
acid to generate hydroperoxyl derivatives, such as
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Figure 5: Synthesis of reactive carbonyl species thatmodify proteins and advancedglycation endproducts
by glucose autoxidation 82 .

hydroperoxy-eicosatetraenoic acids (HPETEs) 99.
The 12-LOX (an isoform of lipoxygenase) is ac-
tivated by hyperglycemia and free fatty acids
or pro-inflammatory cytokines. Furthermore,
12-LOX stimulation promotes the release of the
pro-inflammatory lipid intermediates, 12 (S)-
hydroperoxyeicosatetraenoic acid {12(S)-HPETE}
and 12 (S)-Hydroxyeicosatetraenoic acid {12(S)-
HETE}. These pro-inflammatory lipid intermediates-
in concert with NADPH oxidase (NOX), p38
mitogen-activated protein kinases (p38-MAPK),
and c-Jun N-terminal kinase (JNK)- can initiate the
activation of inflammatory pathways. Eventually,
these signaling pathways cause an elevation in ROS,
oxidative stress, and endoplasmic reticulum (ER)
stress, which can finally lead to impairment and death
of β -cells100. The inhibition of the nuclear factor
erythroid 2–related factor 2 (Nrf2) translocation
by 12(S)-HETE, which controls the expression of
antioxidants, is illustrated in Figure 7100,101.

ML355 has been reported to be a potent inhibitor
of human 12-LOX with an IC50 of 290 nm102. Ac-
cording to Adili et al.,103 ML355 inhibited 12-LOX
oxylipin production in vivo in a dose-dependentman-
ner.

Hexokinase-2 driven glycolytic overload

Hexokinase-2 is the rate-limiting enzyme that
catalyzes the first step of glycolysis, involving the
phosphorylation of glucose to glucose-6-phosphate
(G6P)105. Under hyperglycemic conditions,
hexokinase-2 initiates an abnormal rise in glycolytic
metabolic flux without concurrent transcriptional
or other functional regulation. The metabolic flux
leads to an unusual increase in the level of glycolytic
intermediates. This process is known as a glycolytic
overload and is accompanied by several diabetic com-
plications104. The diabetic pathogenic mechanisms
associated with this glycolic overload are as follows:
G-6-P induces mitochondrial dysfunction, fruc-6-P
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Figure 6: COX-2 activation by hyperglycemia (Modified from: 83). AGE: Advanced glycated end-products;
RAGE: Receptor for advanced glycated end-products; PKC: Protein kinase C; AR: Aldose reductase; ROS: Reactive
oxygen species; NF-kB: Nuclear factor-kappa B.

is channeled to the hexosamine pathway, and dihy-
droxyacetone phosphate (DHAP) activates PKC. At
the same time, AGEs are formed from methylglyoxal
(MG) through glyceraldehyde-3-phosphate and
DHAP intermediates (Figure 8)104,106–108.
However, a possible therapeutic approach towards the
prevention of the complications that may arise from
glycolytic overload is through the inhibition of G6P
buildup and hexokinase-2 displacement from the mi-
tochondria. This can be made possible by channeling
G6P towards the pentose phosphate pathway through
the stimulation of glucose-6-phosphate dehydroge-
nase. This process also helps in mitigating carbohy-
drate response element (ChoRE)-linked expression of
hexokinase-2 109.

CONCLUSION
The disorders associated with DM are linked to vari-
ous metabolic pathways, facilitated by enzyme activ-
ities of the polyol pathway, hexosamine biosynthetic
pathway and glucose autoxidation, as well as being as-
sociated with increased synthesis of AGE hexokinase-

2 driven glycolytic overload and increased activities
of COX, LOX and PKC enzymes. The inhibition of
the enzymes involved in these pathways could serve to
mitigate and arrest diabetic complications. Thus, suit-
able inhibitors for enzymes involved in DMmetabolic
events could serve as panaceas against diabetic com-
plications, and would add to the growing list of new
and potentially more effective antidiabetic drugs.

ABBREVIATIONS
12-HETE: 12(S)-Hydroxyeicosatetraenoic acid
12-HPETE: 12(S)-hydroperoxyeicosatetraenoic acid
AGEs: Advanced glycation end-products
AR: Aldose reductase
Arg: Arginine
ChoRE: Carbohydrate response element
COX: Cyclooxygenase
DHAP: Dihydroxyacetone phosphate
DM: Diabetes mellitus
eNOS: Endothelial nitric oxide synthase
ER: Endoplasmic reticulum
F-1, 6-bis-P: Fructose-1, 6-bisphosphate
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Figure 7: Role of 12-LOX in diabetic complications100,101. JNK: c-Jun N-terminal kinase; p38-MAPK: p38
mitogen-activated protein kinases; ROS: Reactive oxygen species; NOX: NADPH Oxidase; 12-HETE: 12(S)-
Hydroxyeicosatetraenoic acid; 12-HPETE: 12(S)-hydroperoxyeicosatetraenoic acid; 12-LOX: 12-Lipoxygenase;
Nrf2: Nuclear factor erythroid 2–related factor 2; ER: Endoplasmic reticulum; FFAR: Free fatty acid receptor; PLA:
Phospholipase A2;MCP1: Monocyte chemoattractant protein 1; PGE2: Prostaglandin E2 ,GLUT1/2: Glucose trans-
porter 1 or 2.

FFAR: Free fatty acid receptor
Fruc-6-P: Fructose-6-phosphate
G6P: Glucose-6-phosphate
GA3P: Glyceraldehyde-3-phosphate
GFAT: Glutamine: fructose-6-phosphate-
amidotransferase
Gln: Glutamine
Glu: Glutamate
GLUT1/2: Glucose transporter 1 or 2
IL: Interleukin
JNK: c-Jun N-terminal kinase
LOX: Lipoxygenase
Lys: Lysine
MCP1: Monocyte chemoattractant protein 1
MG: Methylglyoxal
NADPH: Nicotinamide adenine dinucleotide phos-
phate
NF-kB: Nuclear factor-kappa B
NF-κB: Nuclear factor κB
NOX: Nicotinamide adenine dinucleotide phosphate
oxidase

Nrf2: Nuclear factor erythroid 2–related factor 2
OGT: O-linked N-acetylglucosamine (O-GlcNAc)
transferase
p38-MAPK: p38 mitogen-activated protein kinases
PGE2: Prostaglandin E2
PKC: Protein kinase C
PLA: Phospholipase A2
RAGE: Advanced glycation end-product receptor
ROS: Reactive oxygen species
SD: sorbitol dehydrogenase
TNF-α : Tumor necrosis factor α
TPI: Triosephosphate isomerase
UDP: Uridine diphosphate
UDP-N-acetylglucosamine: uridine-5-diphosphate-
N-acetylglucosamine
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Figure 8: Downstream diabetic consequences of hexokinase-2 driven glycolytic overload. (Modified
from:104). G6P: Glucose-6-phosphate; Fruc-6-P: fructose-6-phosphate; F-1, 6-bis-P: fructose-1, 6-bisphosphate;
TPI: Triose phosphate isomerase;DHAP: Dihydroxyacetone phosphate;GA3P: Glyceraldehyde-3-phosphate;MG:
methylglyoxal; PKC: Protein kinase C; AGE: Advanced glycation end-products.
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