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ABSTRACT
Aerogels have been steadily developed since its first invention to become one of the most promis-
ing materials for various medical and non-medical applications. It has been prepared from organic
and inorganic materials, in pure forms or composites. Cellulose-based aerogels are considered one
of the promising materials in biomedical applications due to their availability, degradability, bio-
compatibility and non-cytotoxicity compared to conventional silica or metal-based aerogels. The
unique properties of such materials permit their utilization in drug delivery, biosensing, tissue en-
gineering scaffolds, and wound dressing. This review presents a summary of aerogel development
as well as the properties and applications of aerogels. Herein, we further discuss the recent works
pertaining to utilization of cellulose-based aerogels for antibacterial delivery.
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INTRODUCTION
Aerogels have been defined as materials composed
of more than 99% air; they can be prepared from
various organic or inorganic precursors and are of-
ten manufactured in multi-shape structures to serve
different needs1. S. Kistler made the initial aero-
gel in 1931, as a result of replacing the liquid of
the gel with gas without changing the intact struc-
ture. He used silica gel as a precursor material in his
first preparation2. A few years later, aerogels were
steadily developed and were prepared from organic,
inorganic, hybrid and even different composites of
materials. Biopolymers and, particularly, cellulose
have gained a lot of popularity among scientists in
terms of aerogel preparation, especially in biomedi-
cal applications. They have been utilized in wound
healing, tissue engineering scaffolds, and drug deliv-
ery 3,4. Even non-medical applications have benefited
from aerogels. Many scientists have joined the race to
develop and fabricate such materials to serve human-
ity in many applications, including insulation5,6, ab-
sorption7,8, packaging9,10, supercapacitors11,12, cat-
alysts13,14, energy storage15,16, filtration17,18, con-
duction19,20, sensing21,22, cleaning, and adsorption
of wastes23,24. Figure 1 shows the summary of dif-
ferent non-medical applications of aerogels. How-
ever, despite the huge number of developed aerogels,
the commercialization process has been still relatively
slow. Meanwhile, the number of companies produc-
ing aerogels is steadily increasing to provide high per-
formance materials for different applications.

Cellulose is the most abundant polymer on earth. It
have been obtained mainly from plant and bacterial
sources25. However, it is one of the most used poly-
mers in aerogel preparation due to its unique prop-
erties, such as biodegradability, biocompatibility and
negligible cytotoxicity 26. Cellulose-based aerogels
have been widely used in many medical applications,
such as biosensing, drug delivery, tissue scaffolding,
and antibacterial materials for wound dressing.
There are already several excellent review articles dis-
cussing cellulose-based aerogels, such as one by Ab-
dul Khalil, H. P. S et al.1 which further discusses
the chronological development of aerogels and the
biomedical applications of cellulose nanofiber-based
aerogels. Other reviews have discussed the chemistry
and physics beyond their synthesis and their different
applications27,28. However, not much has been inves-
tigated regarding the use of cellulose-based aerogels
for antibacterial delivery or wound dressing. We an-
ticipate that many more new aerogel types will be dis-
covered in the next few years. Many other new combi-
nations need to be discovered. Indeed, the interest in
aerogels just keeps growing as indicated by the num-
ber of publications each year. This current review pro-
vides an overview on aerogels and their development,
we well as discusses the recent works using cellulose-
based aerogels for antibacterial delivery.

DEVELOPMENT OF AEROGELS
Since its invention back in the 1930s, research stud-
ies on aerogels have steadily risen. The father/founder
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Figure 1: Summary of different non-medical applications of aerogels since its invention with examples of
themost commonly used types of aerogel for each application.

of aerogel, S. Kistler, described his first invention as
replacement of the liquid in the gel with gas, while
keeping the gel’s structure intact 29. One year later, the
same scientist prepared many aerogels from different
materials, including metal oxides and some organic
materials, following the same approach. Figure 2
summarizes some of the important events regarding
the evolution of aerogels. As a liquid-free network,
aerogels can be defined as solid, ultra-lightweight and
lucid open porous networks obtained from the gel fol-
lowing the removal of the liquid without any signif-
icant modification in the network structure30. The
physical, chemical and mechanical properties of this
network depends on the material or group of materi-
als that form this network.
The chemistry of aerogels is very flexible and has been
reported to be altered by many factors, such as the
precursor materials31, their ratios 32, preparation ap-
proaches33, and so on. The pore size and surface
area of aerogels can also be tailored34. Furthermore,
different functional groups have been implemented
in the aerogels to provide desired mechanical and
physico-chemical properties 35. Particularly, hybrid
aerogels are able to have their propertiesmodified and
new functionalities added, depending on the target
application. On the other hand, if the properties of
aerogels were improved, new applications which were
impossible in the past would be enabled in the fu-
ture36.

CELLULOSE-BASED AEROGELS
Cellulose is one of the most utilized biopolymers in
aerogel preparations; studies on biopolymers have
been motivated by the search for sustainable precur-
sors instead of using traditional oil-based or synthetic
polymers3. Cellulose hasmany advantages over other
conventional biopolymers, namely that it is among
the most abundant biopolymers on earth and can be
extracted from different sources37–39. Apart from
plants, cellulose has been extracted using static cul-
turing of many types of bacteria, such as Acetobac-
ter xylinum40. Bacterial cellulose has the advantage
of having a higher degree of crystallinity41 and oc-
curring in pure form without any impurities, such as
lignin and hemicellulose. Nanocellulose is a term re-
ferring to cellulose materials that have nanoscale di-
mensions (1 to 100 nm), which include either cel-
lulose nanocrystals (CNC) or cellulose nanofibers
(CNF)42. Both CNC and CNF display unique prop-
erties, including high surface area and high strength,
as well as tunable surface chemistry, allowing for con-
trolled interactions with other polymers, nanoparti-
cles, biological materials and/or small molecules33.

Properties of cellulose-based aerogels
Cellulose-based aerogel is a highly porous nanos-
tructured material which displays the typical features
of aerogels with many advantages. Nano-cellulose
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Figure 2: Themain chronological events of aerogel development since its first invention until the present.

materials, including cellulose nanofiber and cellulose
nanocrystals, are attracting increasing interest among
scientists. Indeed, every year, a large number of re-
search studies are conducted on them. The unique
properties of this material, including high mechani-
cal strength, high degree of polymerization, high pu-
rity and high crystallinity, make it a promising mate-
rial for preparing aerogels with characteristics of flex-
ibility and pressure resistance43,44. Zhang, T. et al.45

compared the morphological structure of each of the
CNF and CNC aerogels individually, and in differ-
ent mixed ratios as presented in Figure 3. They re-
ported that mixed (CNC and CNF) aerogels show
better performance than the pure aerogels of each of
them. However, all the aerogels that they prepared
had 3D network structure and rich pores which were
formed by the disorder of the growing ice crystals.
It can be observed in the obtained SEM figures that
there are some differences in the morphology; CNC-
based aerogel is spherical in shape while the CNF-
based aerogel is rice-shaped, which results from the
longer filament of CNF compared to CNC.
The mechanical properties of aerogels have been re-
ported to be affected by two main factors: precur-
sor material and preparation method 46. Cellulose is
used to enhance the mechanical properties of many
hybrid aerogels. J Yang et al.47 reported that cellu-
lose enhances the mechanical properties of the aero-
gel, and that the ratio of alginate cellulose has a signif-
icant effect on themechanical properties. In addition,
using cellulose as the precursor material in aerogel
preparation has many beneficial properties, including

the functional groups on the surface of the cellulose
chain which is considered as a cross-linking agent for
many other materials. The possibility of regenerating
or reusing cellulose is another advantage of the mate-
rial; additionally, the chemical modification of cellu-
lose improves its mechanical strength and the struc-
tural characteristics of cellulose aerogels are relatively
easy to generate48.

Biomedical applications of cellulose-based
aerogels
Recently, with the revolution of nanotechnology,
many methods have been developed to isolate
nanofibers, nanocrystals and nanoparticles from dif-
ferent materials. Nanocellulose-based aerogels show
great promise in a wide range of biomedical, pharma-
ceutical, cosmetic, separation, energy storage, con-
struction, and food applications41. Edwards, J. V et
al.49 used peptide nanocellulose aerogels for biosens-
ing; they fabricated aerogels with high porosity of 99%
to detect protease enzyme activity. Their findings in
term of mass spectral analysis and the physical prop-
erties of prepared aerogelswere reported to be suitable
for interfacingwith an intelligent protease sequestrant
wound dressing application.
Cellulose-based aerogels have been also utilized in
many regeneration studies to regenerate many tis-
sues and organs, such as bone, skin and cartilage.
Cellulose-based aerogels have been suggested to solve
the issue of the potential complications associated
with autografts since they have been widely used in
tissue engineering scaffold preparations. DA Osorio
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Figure 3: SEM images of aerogels prepared using different ratios of cellulose nanocrystals (CNC) and cel-
lulose nano fibers (CNF): (a) CNC/CNF (3:1), (b) CNC/CNF (1:3), (c) CNC/CNF (1:1), (d) CNC, (e) CNF. Adapted from
Zhang, et al. (2018) with permission from Elsevier 45 .

et al.50 have used for the first time modified cellulose
nanocrystal aerogels as viable bone tissue scaffolds.
Their findings demonstrate that cellulose-based aero-
gels are flexible and porous, and can effectively facili-
tate bone growth after they are implanted in bone de-
fects. Other medical applications have benefited from
cellulose aerogels. For instance, J Zhao et al.51 used
a combination of polyethylenimine (PEI)-grafted cel-
lulose nanofibril aerogels for drug delivery, and re-
ported that the materials are promising and can be
used as new generation controlled drug delivery carri-
ers. The unique pH and temperature-responsiveness
of cellulose-based aerogels, together with their excel-
lent physical, chemical and mechanical properties, as
well as their biodegradability, biocompatibility and
low cytotoxicity, offer a simple and safe alternative to
the conventional systems (synthetic polymers). Ta-
ble 1 shows a summary of biomedical applications of
cellulose-based aerogels.

ANTIBACTERIAL APPLICATIONS OF
CELLULOSE-BASED AEROGELS
Many antibacterial-based materials have been immo-
bilized inside the nanocellulose network upon the
formation of aerogels; these materials retain their
antibacterial activity resulting from the antibacterial
aerogel. Various plant extracts and essential oils have
been reported to possess extraordinary antibacterial

activities. Yahya et al.64 reported that Punica grana-
tum peel extract had stronger antibacterial activity
than many common antibiotics. The authors tested
their extract on three different species of bacteria and
demonstrated it had strong antibacterial activity. Use
of natural extracts together with cellulose-based aero-
gel is preferable in medical applications to avoid syn-
thetic and chemical ingredients.
In another study, Khan et al.65 used silver nanopar-
ticles and enzymes as antibacterial materials and im-
mobilized these materials inside CNF aerogels. The
authors evaluated their aerogel composites for their
potential use in clinical trials. The results indicated
the aerogels were non-toxic and biodegradable. Thus,
the authors reported that cellulose nanofibers are a
suitable support for bioactive materials and are ef-
fective in protecting and retaining enzymatic and an-
tibacterial activities. Lu et al.66 prepared high porous
(90 – 95%) dialdehyde CNF/collagen composite aero-
gels which exhibited strong water absorption (up
to 4000%) and good biocompatibility. This aerogel
composite can be enhanced with addition of plant-
based antibacterial material that can prevent bacterial
growth. The high capacity of aerogels to absorb water
lends support to their potential use in wound dress-
ing. Shan et al.67 have loaded Amoxicillin antibiotic
inside of cellulose aerogel, aiming for better perfor-
mance after they controlled amoxicillin release. The
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Table 1: Selected studies of different biomedical applications of cellulose based aerogels

Application Material Summary Ref

Drug
delivery

CNF aerogels Tested for oral controlled drug delivery & resulting of improved in
bioavailability of drug.

52

Cellulose triacetate
aerogel

Test the influences of the size and the distribution of drug, aerogel
show high drug uptake and slow release rate

53

Cellulose aerogels Evaluated loading capacity and release kinetics, promising con-
trolled drug release carriers by exhibiting a high-loading capacity

54

Biosensing Peptide/cellulosic 
aerogel

Successfully used a micro-titer enzyme assay to determine the re-
sponse, sensitivity, and kinetic behavior of the biosensor.

55

Prussian
blue/cellulose
aerogel

Tested as an orally administered drug, which was able to detect and
remove ingested cesium ions from the gastrointestinal tract.

56

CNC aerogel Evaluated a sensor to detect human neutrophil elastase for healing
chronic wounds.

57

Skin tissue
repair

Bacterial cellulose The using of aerogel had faster and better healing effect and less in-
flammatory response.

58

Nanocellulose
aerogel

Novel invention a promising process to fabricate bilayer aerogel for
skin repair.

59

Amoxicillin/ Cellu-
lose aerogel

Grafted amoxicillin onto the cellulose, and observed enhancement
of the antimicrobial activity against fungus bacteria.

60

Tissue
scaffolds

CNF/ PEGDA
aerogel

Possess good mechanical and biocompatibility, tested cells tightly
adhere and spread on the aerogel with good differentiation and vi-
ability.

61

Surface-modified scaffold for skin regeneration, showed good adhe-
sion and proliferation of keratinocytes during 7 days of incubation.

62Cellulose/gelatin 

aerogel

Pure CNC aerogel Various scaffolds structures successfully printed using direct ink
write technique.

63

antibiotic lost its effect against many types of bacte-
ria due to the misuse of it; most of the bacteria had
already developed resistance to this antibiotic. How-
ever, the authors reported that cellulose aerogels ex-
hibited excellent antibacterial activity with the amox-
icillin dose-dependent activity67. Immobilization of
certain doses of antibiotic inside the aerogel network
enhances the activity of the antibiotic, which has been
demonstrated in a previous study68.
Cellulose has a unique surface chemistry, permitting
it to cross-link with many materials, including pro-
tein extracts, antibiotics, and even metal nanoparti-
cles68. Zuguang et al.69 prepared hybrid cellulose-
based aerogels using silver nanoparticles as antibac-
terial materials. The hybrid aerogel interestingly had
a strong antibacterial effect against many bacterial
species. The authors destroyed the crystalline region
of cellulose and, partly, the oxidation of some groups
to allow strong cross-linking of silver nanoparticles.
This type of cellulose surface modification was done

to enhance the ability of cellulose and prevent the po-
tential release of nanoparticles that may cause some
health risks in the long term. Many other studies
have used silver nanoparticles, such as Salomoni et
al. (2017)70, Tang et al. (2018)71 and Vijaya et al.
(2017)72, as antibacterialmaterials but due to the high
cost of such materials and their potential health risk,
they did not reach production or clinical trial stage.
However, use of aerogels to immobilize the nanopar-
ticles will significantly minimize the required dose to
avoid their release and to facilitate the potential re-
generation of the nanoparticles to be used over again.
Henschen et al.73 prepared novel wet-stabilized aero-
gels that were able to retain their porosity after being
soaked in water. In addition, their cellulose surface-
modified based aerogels were able to adhere to more
than 99% of bacteria from the aqueous suspension.
Microscopy analysis confirmed that surfacemodifica-
tions have been done to cellulose to allow for bacterial
adherence73.
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The findings of this study show the potential of cre-
ating 3D materials that have high efficiency to adsorb
the bacteria and high porosity. Thus, the great surface
area of aerogels in combination with their open struc-
tures gives the material high potential for bacterial re-
moval. Use of cellulose-based aerogels as antibacterial
materials hasmany environmentally advantages, such
as being green, sustainable, biodegradable, abundant
and non-environmentally taxing74. Numerous stud-
ies have evaluated biocompatibility and cytotoxic-
ity of cellulose-based aerogels56,75–77, and concluded
that there is no cytotoxicity that has been observed
with cellulose-based aerogels. Cellulose aerogels fa-
cilitate cell adhesion and viability, and enhance cell
growth and proliferation. In terms of wound dress-
ing, as mentioned earlier from toxicity studies, cellu-
lose aerogels can be safely incorporated with antibac-
terial substances and used as promising materials for
wound dressing and healing.
The unique physical, chemical and mechanical prop-
erties, as well as biocompatibility, of cellulose-based
aerogels make them excellent candidates for many
purposes in the medical field. Hence, their biocom-
patibility enables them to be incorporated with other
natural materials78 to obtain a green composite with
specific properties. Essential oils have the potential
to cross-link with cellulose particles 79. R Moghimi
et al.80 prepared antibacterial cellulose-based edible
films for food packaging, using thymus essential oil
as an antibacterial ingredient inside the film. Follow-
ing this strategy, it was shown to be environmentally
safe for producing green and sustainable materials for
many applications. Another potential utilization of
aerogels, as they are composed of up to 99% air81 and
per the previous explained strategy, is that it is pos-
sible to use antibacterial aerogels to cure chronic di-
abetic wounds and prevent the amputation of many
limbs that are mainly caused by growth of anaerobic
bacteria 82. Antibacterial aerogels will provide clean
wounds and inhibit aerobic bacterial growth, without
closing or preventing the aeration which is necessary
for wound healing83.
However, in order to propose the safe use of cellulose-
based aerogels for biomedical applications, it is im-
portant to evaluate the toxicity and fate of these mate-
rials. Recently, some authors raised important con-
cerns that justify the study of bio-interactions and
the possible impact to humans upon the exposure to
nanocellulose materials. This would provide consis-
tent and useful knowledge that can guide the regu-
lations84–86. Most of the biological impact of ma-
terials have been studied by cytotoxicity evaluation
assays. Acute and/or chronic toxicity of cellulose,

nanocellulose-based materials during long-term ex-
posure, occupational exposure at normal conditions,
and exacerbation of pre-existing disease conditions
must be studied. Furthermore, the concerns about
using nanoparticles in medical applications must be
further investigated in long-term studies. Cellulose
nanomaterials and aerogels have both been prepared
with different techniques, using a wide range of pre-
treatment and treatment chemicals, resulting in the
same or modified final materials. Cytotoxicity stud-
ies have not yet been conducted for all the materials
that have been fabricated. Another concern about the
biological effects is that most of previous studies have
evaluated the cytotoxicity of the materials using only
one cell type and for a short period of time, which
raises concerns about the possible effects on other cell
types, in the short term and long term.

CONCLUSION
Cellulose-based aerogels have sustainability, renewa-
bility, biocompatibility, and biodegradability of cellu-
lose but also have excellent properties such as lowden-
sity, high porosity, and a high specific surface area,
enabling them to be utilized in many applications in-
cluding antibacterial applications. The materials have
been successfully demonstrated for their ability to be
used as antibacterial agents and for skin and tissue re-
pair. This review discussed some applications of us-
ing cellulose-based aerogels as an antibacterial car-
rier, and highlighted the concerns about the possible
biological effects of these materials. There is a need
for more animal-based long-term studies on cellulose
aerogels to eliminate concerns and ensure safety of
their use in humans.
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CNC: cellulose nanocrystal
CNF: cellulose nano fiber
PEGDA: polyethylene glycol diacrylate
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