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ABSTRACT
Alzheimer's disease (AD) is themost frequent andmultifactorial form of dementia, characterised by
multiple cognitive impairments and personality changes. Different methods including chemicals
have been used to induce AD-like symptoms in rodent in order to screen many therapeutic drugs
for a variety of cognitive dysfunctions. Articles from reliable databases such as Google Scholar,
Science Direct, PubMed, Scopus, and Ovid were searched and retrieved with the following descrip-
tors: 'Alzheimer's Disease', Cognitive impairments', Neurotoxins that induce AD', Alzheimerogenic
chemicals', excitotoxins', Amyloid beta', neurofibrillary tangles. A number of chemicals have been
studied to develop an animal model of AD on the basis of their mechanism of action for cogni-
tive dysfunctions. Some of such chemicals are Heavy metals, Scopolamine, Ethanol, Colchicine,
Streptozotocin, Lipopolysaccharide, and Okadaic acid among others, with a view to understanding
the pathogenesis of this devastating disease. The purpose of this review is to put forward some
AD pathophysiology including AD causative theories and also highlight some Alzheimerogenic
chemicals for the purpose of enriching our existing knowledge. It is worth mentioning that not all
the biochemical, histopathological, cognitive and behavioural abnormalities can be recapitulated.
Nonetheless, experimental models of AD produced by chemicals offer insights to unravelling the
pathogenesis of the disease.

Key words: Alzheimerogenic chemicals, Cognitive dysfunction, Alzheimer's disease, Alzheimer's
pathogenesis, Amyloid beta

INTRODUCTION
As the aging population is increasing, the rate of
age-associated diseases among older adults has be-
come a serious health concern worldwide 1. It is well-
established that these age-related diseases cause pro-
gressive and irreversible loss of neurons and subse-
quently lead to dementia. One of such age-related
disorders is Alzheimer’s disease (AD). AD, a neu-
rodegenerative disease, is one of the most common
andmultifactorial forms of dementia characterized by
multiple cognitive impairments, personality changes,
and abnormal behavior2. The key pathological em-
blems observed in AD brain tissues are amyloid beta
(Aβ ) peptide and hyperphosphorylated tau (p-tau)
protein, although the exact mechanisms which cause
these alterations are yet to be uncovered 3. The forma-
tion ofAβ is due to the aggregation of extracellular se-
nile plaques (SP), while neurofibrillary tangles (NFTs)
are caused by abnormal deposits of p-tau proteins3.
Furthermore, mitochondrial dysfunction, synaptic
damage, inflammatory responses, defective neuro-
transmissions, hormonal alterations and abnormali-

ties in the cell cycle are all linked with AD4–6. The
remarkable risk factors linked with the progression of
AD are old age, as well as multiple genetic and envi-
ronmental factors. Although the etiology of AD re-
mains unclear, multiple findings have revealed that
oxidative stress is an early characteristic of the AD
pathological process and also involved in the forma-
tion of Aβ and NFTs7. Thus, several attempts are on-
going in order to establish anti-AD drugs that could
target specific pathogenesis, but these have not gar-
neredmuch success. On the other hand, animalmod-
els have been used to trigger pathological changes
similar to the human form of AD and to identify the
pathogenesis, especially during the pre-symptomatic
stage8. There is a dearth of knowledge with respect to
chemically-induced AD models. Hence, this review
is aimed at exploring some of the chemicals that are
used for the induction of AD-like pathologies and be-
havioral deficits.

HISTORY OF AD
ADwas first reported by Alois Alzheimer in 1906, but
it was not until around 70 years after its discovery that
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much interest was placed on AD research9. The find-
ings that have emerged have unraveled and demon-
strated, importantly, that the effects of AD commence
a long time before its symptoms manifest10. Several
lines of evidence have revealed that AD is a prevailing
root of dementia and a significant source of death in
the world11,12. Since its discovery, AD has received
substantial attention among the types of dementias
that are of global health concern, over the years, due
to its debilitating nature. To date, the precise etiology
of AD remains to be elucidated, as well as questions
such as why the disorder and its symptoms advance
so quickly in some people (but is delayed in others),
and how the disorder could be more effectively man-
aged or treated10.

CHARACTERISTICS AND SYMPTOMS
OF AD
AD is characterized by loss of memory, mood swings,
problems with attention and orientation, and dif-
ficulties in carrying out daily activities. The two
main pathological hallmarks of AD are aggregations
of amyloid plaques (extracellular) formed by Aβ and
NFTs (intracellular), produced by the hyperphospho-
rylation of tau protein3. These alterations are ulti-
mately followed by severe damage and loss of neu-
rons in the brain regions concerned with memory
and learning10. AD is distinguished at the cel-
lular level by mitochondrial dysfunction, oxidative
stress13, metal imbalance, inflammation, and apop-
tosis, among other hallmarks14,15.
Furthermore, several symptoms are observed in indi-
viduals living with AD which changes over a period
of time. Of the symptoms reported, loss of memory
in recalling recent conversations are some of the early
clinical manifestations; as well, depression and apathy
have been identified in AD.
Additionally, other symptoms that appear later in life
as the disease progresses include amnesia16, disori-
entation, impaired communication, confusion, poor
judgement, difficulty in swallowing, speaking, and
walking10. These important changes seen in AD pa-
tients reflect the severity of neuronal loss in different
regions of the brain. There are three stages in AD:
early, moderate and severe- through which the symp-
toms of the disease progress and differ from individ-
ual to individual. During the early stage of AD, pa-
tients can carry out basic things independently with
little assistance for some activities; these activities in-
clude driving, walking, and other hobbies that can
still be done by the patients10,17. However, during
the moderate stage of AD, patients may be unable to

carry out routine activities, may become disoriented,
and even develop personality disorders and behav-
ioral changes (such as agitation and suspiciousness).
Once it reaches the severe stage of AD, the patients
become dependent on people in doing daily activities,
such as eating, dressing, and bathing, among other ac-
tivities17.

PREVALENCE OF AD
AD is the primary root cause of dementia; as of 2015,
around 46.8 million people worldwide suffered from
dementia18. This number is expected to increase ex-
ponentially to reach 131.5 million by 2050 if there are
no interventions18,19. In terms of prevalence between
genders, AD ismore of an old age disease, andwomen
have been reported to have a longer life expectancy
when compared to men20. Hence, women account
for about two-thirds of the elderly population affected
by AD. Indeed, AD has a direct economic burden
worldwide, with studies indicating that AD manage-
ment cost 818 billion USD in 2016; in 2018, the ex-
pected projected cost rose to 1 trillion USD21,22.

AD CAUSATIVE HYPOTHESES
TAU HYPOTHESIS
The tau hypothesis suggests that hyperphosphoryla-
tion of tau protein leads to the conversion of nor-
mal tau into the paired helical filament (PHF-tau) and
NFTs23–29. Previously, Aβ had been the focus of AD
research. Only recently have researchers begun to
shift focus to tau protein due to the fact that a vari-
ety of reports have shown tau proteins being among
the key elements contained in the NFTs. Tau protein,
a member of the microtubule-associated protein, is
also a functional monomeric and unfolded cell mem-
brane protein, located within the cytosol of a neuron
and very crucial in tubulin stabilization30. In addi-
tion, tau is known to control neurite growth and have
a role in axonal guidance, thus enhancing the normal
function of neurons31. In humans, tau protein is only
found in trace levels in non-neuronal cells32. Tau goes
through various post-translational changes, especially
hyperphosphorylation, a process which acts as a sig-
nificant factor in influencing the stability of micro-
tubules, thereby leading to tau protein accumulation
in AD30. Previous findings have shown that hyper-
phosphorylation of tau protein occurs via conforma-
tional changes, which are followed by the transforma-
tion of tau monomer to tau oligomer, leading to the
paired helical filament and NFT formation33–37. Re-
cent studies have revealed that NFT itself does not ap-
pear to be implicated in causing neurotoxicity lead-
ing to the onset of neurodegeneration38, though the
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hyperphosphorylated tau that disintegrates to form
oligomers (the toxic form of tau) is implicated in neu-
ronal damage39. In addition, recent in vivo and in
vitro findings in rats have highlighted that tau pathol-
ogy may have far-reaching effects in distinct brain
regions39–41. Tau, a microtubule-associated protein,
acts as a scaffolding component to assist in stabilizing
microtubules by influencing tubulin stability in order
to control the normal neuronal function 42,43.
The position of the tau gene, microtubule-associated
protein tau (MAPT), is essential and located on 100
kb of the long arm of human chromosome 17 at lo-
cus 17q21, and has 16 exons44. Moreover, it has
been shown that in the brain of humans, the tau pro-
teins encode six isoforms that have different sizes,
with their length range being between 352 and 441
amino acids45. These isoforms have some variations,
three repeats (3R) or four repeats (4R) in the C ter-
minal, and also the presence or absence of one (29
amino acids) or two inserts (58 amino acids) in theN-
terminal part, which bind to actin proteins and differ-
entiate them. Findings have revealed that the repeat
areas (244-268 amino acids) located in the C-terminal
are the main domain, which causes the clinging of tau
to microtubule46,47. Furthermore, findings have sug-
gested that tau phosphorylation at specific epitopes
could adjust the capability of tau to cling to micro-
tubule 48. Many post-translational changes, mostly
tau hyperphosphorylation, were considered to be in-
volved as essential elements that influence the assem-
bly of microtubule which, in turn, cause tau accumu-
lation in AD 49. Thus, tau protein goes through con-
formational alterations whereas the transformation of
tau monomer to tau oligomer causes the accumula-
tion of tau, thereby causing it to pair with a helical
filament and produce NFTs (due to hyperphospho-
rylation of tau). Emerging studies have revealed that
NFTs are not associated with causing neurotoxicity.
Nonetheless, the intermediary tau oligomer was re-
ported to be a toxic form of tau that is implicated in
synaptic destruction in AD 50. Tau pathophysiology
is accompanied by abnormality of amyloid precursor
protein (APP) and is eminently seen in the brain re-
gions implicated in thememory-hippocampus as well
as parts of the cerebral cortex51.

AMYLOID CASCADE HYPOTHESIS
Although the exact etiology of AD remains controver-
sial, the amyloid cascade hypothesis has been widely
accepted and is the most well-studied of the hypothe-
ses out there23. The presence of amyloid plaques is,
inarguably, a key characteristic of the pathology of

AD. The amyloid cascade theory proposes that amy-
loid plaques, made by the accumulation of Aβ pep-
tides which resulted from the proteolytic separation
of APP, are crucial in AD pathology 52. Studies have
shown that the main composition of amyloid plaques
in AD are polypeptides (about 4 kDa) that are usu-
ally produced in soluble form. Aβ protein has been
shown to have a variety of isoforms, mostly ranging
from 39 to 43 amino acids52,53. The two isoforms of
APP, APP751, and APP770 are made up of 56 amino
acids in their ectodomain.
Furthermore, findings have revealed that Aβ1-40
(Aβ40) and Aβ1-42 (Aβ42) are the two major oc-
curring isoforms54. Abnormal processing of APP has
been found to lead to the formation of disproportion-
ate insoluble Aβ isoforms. These assemble and es-
tablish aggregates that consist of amyloid protein in
the form of oligomers and protofibrils. Indeed, previ-
ous findings have suggested that this results from the
changing of Aβ monomers to the Aβ oligomers be-
fore accumulation55. The oligomers eventually cause
damage to the neurons56. Thus, high concentra-
tions of indissoluble and likelyAβ42 oligomers are in-
volved in the synaptic elimination during early stage
AD57.

Formation of Aβ
Aβ peptide52,58 is a derivative of Amyloid β -
precursor protein (AβPP), also an intrinsic type I
glycoprotein59 which has a broad ectodomain. The
position of the chromosome for AβPP is found on
21q21.2. There are 18 exons in the APP gene that ex-
ceeds 170 kb, thereby creating 10 isoforms through
discrete splicing. These isoforms measure between
563 and 770 amino acids. APP is 695 amino acids in
length and is one of the isoforms that has been pre-
viously reported to be found in neurons of the cen-
tral nervous system60. The specific area that codes
Aβ -strings is made up of 16 and 17 exons, of which
therein are (40 and 43) amino acid residues. Specif-
ically, this area continues from the ectodomain to
the protein’s transmembrane domain53. APP’s cen-
tral domain possesses strong affinity; hence, it can
bind to ions such as copper (Cu) and Zinc (Zn), as
well as heparin and collagen, within the extracellu-
lar matrix, thereby mediating the interplay of APP
with the extracellular matrix. The sphere implicated
in the neuritic process is defined by a precise string
which is seen following the inclusion of exon 7 prod-
uct61. APP isoforms have been known to play vital
roles in enhancing coordination between cells and,
thus, a few of those roles are hereby outlined 62. APP
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isoform (of 695 amino acid) has been shown to be in-
volved in aiding coordination between cells and en-
hancing the connection to the extraneuronal matrix,
thereby leading to stability. APPwithin the intracellu-
lar domain may be associated with a cytoskeletal sys-
tem that transports constituents within a particular
cell. APP1-671 (βAPPs) and APP1-687 (αAPPs) are
the other two APP isoforms produced in segments;
they offer a protective role to the neurons and regu-
late events at the synapse 44.

Processing of APP
Proteolytic series of events taking place around and
in the APP transmembrane sphere yield a better ex-
pression for the production of toxic Aβ42 protein,
and eventually for AD pathogenesis. Three differ-
ent divisions release the APP ectodomain from the
membrane. These divisions have been confirmed to
be α-secretase split (which separates Aβ -domain and
inhibits Aβ -development- by generating amyloido-
genic substance- due to the incapability of developing
pathogenic Aβ )63, β -secretase cleavage (the segment
produced from α-secretase, while the β -secretase
segments remains connected to the membrane; fol-
lowing further conversion by γ-secretase it becomes
weakened), and Aβ -protein (Aβ42) breakage (whose
aggregation is thought to cause AD due to the pres-
ence of toxic and fibril aggregates)52,54,58.

Biochemistry of Senile Plaques
Blocq andMarnesco, in 1892, were the first to demon-
strate that senile plaques (SP) could be described as
densely packed structures called amyloid bodies. The
process by which amyloid bodies develop and are im-
plicated in AD development is known as amyloidosis.
Fibrillogenic proteins (about 10 nm in diameter; amy-
loid fibrils that are smooth and straight) andnon-fibril
components (ApoE and serum Aβ components) are
the contents of the amyloid bodies. The SPs, which
are also called amyloid plaques, are the product of an
extracellular accumulation of Aβ protein60.

CHOLINERGIC HYPOTHESIS
The oldest theory among the AD causative theories is
the cholinergic hypothesis64. This hypothesis states
that a decrease in neurotransmitters, known as acetyl-
choline, in neurons is responsible for AD etiology.
The cholinergic hypothesis has been postulated for
more than 3 decades now and suggests that abnor-
mal acetylcholine-containing neurons in the basal
ganglia are implicated in cognitive decline seen in
AD patients65. Essentially, acetylcholine (ACh) is a

neurotransmitter utilized by cholinergic neurons and
is crucial for physiological processes like attention,
learning, memory, stress response, wakefulness, and
sleep, as well as sensory information66–70. Damage
to cholinergic neurons was observed as an important
pathological alteration which corresponds with cog-
nitive destruction seen in AD.
Consequently, this hypothesis was initially tested us-
ing cholinesterase inhibitors which are used for AD
treatment. Thus, as a result of the trial, it has been
noted that tacrine, onemany cholinesterase inhibitors
(including donepezil, galantamine, rivastigmine, and
memantine), was the earliest anti-AD drug to be used
in the clinic71,72. However, due to some identified se-
vere side effects, it has been retrieved from the mar-
ket since 2012. Even though cholinesterase block-
age is a typical palliative treatment with minor gain,
presently, it appears to be the only obtainable clinical
remedy that offers hope to despairing patients with
AD. Despite these facts, the cholinergic hypothesis
has not been widely accepted, mainly due to the fact
that the medication was proposed to treat deficiency
of acetylcholine but was not effective. Nonetheless,
about 4 of the 5 approved anti-AD drugs available in
themarket today were developed based on the cholin-
ergic hypothesis23.

OXIDATIVE STRESS HYPOTHESIS
Oxidative stress is believed to be critical in AD patho-
genesis73. Notably, the brain is known to consume
more energy and exert more functions than any other
organs during mitochondrial respiration, which also
increases the likelihood of reactive oxygen species
(ROS) exposure74. Furthermore, AD is closely linked
to molecular oxidative stress, as well as protein ni-
tration, the rise of protein oxidation, lipid peroxi-
dation, and glycoxidation. Moreover, AD is closely
linked to the aggregation of Aβ , which has been re-
ported to cause oxidative stress75–80. Hence, anti-
oxidant compounds are good candidates to offer pro-
tection against oxidative stress and Aβ toxicity, to a
certain extent. Although oxidative stress is one aspect
of AD, the antioxidant approach has been disputed,
too, since it lacks the potential to impede the advance-
ment of AD, and has been suggested to be used as part
of combination therapy81,82.

INFLAMMATION HYPOTHESIS
Recent studies have uncovered that neuroinflamma-
tion and aberrant gliosis are also emblems of AD 83.
Indeed, the inflammation hypothesis has been val-
idated by genetic and transcriptomic studies84–87.
Microglia-related pathways were observed as crucial
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risk factors for AD and its pathogenesis. A wealth
of information has indicated that microglia is a cru-
cial factor. For instance, during the initial phase of
AD, microglia and its associated proteins, such as
the TriggeringReceptor Expressed onMyeloidCells-2
(TREM2), can influence synaptic reduction88,89. The
process of activity-dependent and long-term synap-
tic plasticity is the typical and intrinsic molecular ba-
sis of learning and memory that could be the observ-
able effects on long-term potentiation90. Thus, subse-
quently, amyloid plaques will be surrounded by aber-
rant microglia and astrocytes, and produce several
proinflammatory cytokines. These series of events are
the steps involved in the evolution of AD. However,
in the clinic, non-steroidal anti-inflammatory drugs
(NSAIDS) have not appeared to be beneficial. This
could be largely due to the link between innate immu-
nity and the complexity of AD pathogenesis; thus, the
immune responses generated could either be detri-
mental or useful based on the context87,91,92.
Nonetheless, there are new findings that indicate that
the PD-1 immune crossing point barrier decreases
the pathology of AD, thereby enhancing memory in
AD mouse models93–95, and has become an area for
subsequent research. The recent awareness towards
uncovering the mechanisms involved regarding mi-
croglia disruption in clipping, neurogenesis and plas-
ticity regulation are unlocking areas, allowing for the
exploration of better therapeutic interventions and
diagnoses of AD 96,97. Understanding the abnormal
microglial roles and restoring homeostasis could pro-
vide a new set of concepts for treating AD. How-
ever, due to the intricacy and distinct roles of mi-
croglia in health and disease, new biomarkers that re-
flect the functions of specific microglia are critically
needed 92,98.
Despite all the above armamentarium, AD still needs
to be properly understood in order to address its re-
mote causes and the mechanisms underlying its pro-
gression, of which chemicals or drugs have been indi-
cated as some of the causative factors.

MITOCHONDRIAL CASCADE
HYPOTHESIS
Swerdlow was the first person to propose the mito-
chondrial cascade theory in 2004, where he posits that
mitochondrial abnormality is the main reason for Aβ
accumulation, the formation of NFT, and degenera-
tion of synapses in AD 24. Mitochondrial causative
theory utilizes many theoretical liberties. It presumes
that the physiologic mechanisms underlying AD and
the aging brain are similar. It states that based on the

fact that mitochondrial dysfunction in AD is system-
atic, mitochondrial dysfunction is not enough to rep-
resent the effects of neuronal degeneration.
Furthermore, the hypothesis of the mitochondrial
cascade forecasts that non-Mendelian inheritance is
linked to non-autosomal dominant AD23. Lastly, it
postulates that AD brain mitochondrial abnormality
propels amyloidosis, phosphorylation of tau, and cell
cycle re-entry. Mitochondrial dysfunction is detected
in many AD tissues25, which include fibroblasts,
platelets, mitochondria, and brain. There are three
main defective mitochondrial enzymes involved: α-
ketoglutarate dehydrogenase complex, pyruvate de-
hydrogenase, and cytochrome oxidase26. AD brain
investigations have revealed a normal concentration
of cytochrome oxidase but with an altered structure of
the enzymes itself27. Oxidative stress and proteasome
abnormality have been hypothesised to enhance mi-
tochondrial dysfunction28. Moreover, studies involv-
ing cytoplasmic hybrids (cybrid) have revealed that
mitochondrial DNA (mtDNA) is partly responsible
for the decreased cytochrome oxidase in AD29.

COMMONLY USED CHEMICALS TO
INDUCE AD-LIKE SYMPTOMS IN
RODENTS
Some of the common chemicals used for modelling
AD are scopolamine, streptozotocin, and alcohol,
as well as dysregulation of heavy metals, such as
aluminum (Al), copper (Cu), zinc (Zn), lead (Pb,
and reducing sugar (D-galactose) 99, among others
(Tables 1, 2 and 3).

Aluminum as one of the frequently used
heavymetals for induction of cognitive im-
pairment
Environmental heavymetals are agents that have been
well-established to impact the development of the
brain through neurotoxicity100. Among the com-
monly used Alzheimerogenic chemicals, heavy met-
als have been identified to induce high levels of tox-
icity that is linked with several diseases, including
neurodegenerative disorders, following long-term ex-
posure in humans or chronic administration in ro-
dents. A growing body of support has reported
the relation between heavy metals and neurodegen-
erative diseases, including AD and Parkinson’s dis-
ease100. Heavy metals are generally known to dam-
age the nervous system. Of all the heavy metals, the
effect of aluminum on biological systems has been
well-reported45,101,102. Al is an ubiquitously scat-
tered environmental and industrial toxicant associ-
ated with anemia103, osteomalacia, and hepatic and
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Figure 1: SomeAlzheimerogenic chemicals. The neurotoxic effects of these chemicals lead to gradual neu-
ronal loss and thereby resulting in neurodegeneration and its associated symptoms.

neurological disorders103. The high amount of Al
has been identified in the brain of subjects suffer-
ing from AD and causes toxicological effects, in-
cluding encephalopathy, bone disease, and anemia.
Very recently, orally administered Al (300 mg/kg
body weight) was reported to induce oxidative stress,
cholinergic deficit, and accumulation of Aβ & NFTs
in the brain of rats101.
Moreover, in the Al-treated group, there are marked
histopathological changes and diffuse gliosis accom-
panied by pericellular edema in the cerebral region,
in addition to neuronophagia and loss of neurons. A
number of studies have shown that Al neurotoxicity
is highly linked with cognitive impairment of AD, via
oxidative stress and cholinergic dysfunction104. The
findings have indicated an upregulation in the expres-
sion and activity of acetylcholinesterase (AChE) and
malondialdehyde (MDA), but a significant decrease
in expression and activity of glutathione-s-transferase
(GST), glutathione peroxides (GPX), and glutathione
reductase (GR).

Scopolamine-induced AD-like dementia

A growing body of knowledge has established that
scopolamine is an anticholinergic drug mostly em-
ployed as an approved chemical in pilot studies to
cause memory deficit105. Administration of scopo-
lamine leads to deficits in visual recognition mem-
ory, verbal recall, visuospatial praxis, visuospatial re-
call psychomotor speed, and visuoperceptual pro-
cesses 106. It is one of the most potent and commonly

used drugs to prevent motion sickness107. Further-
more, researchers have documented that scopolamine
non-selectively occludes the adhesion site of ACh
muscarinic receptors in the cerebral cortex and re-
sults in the unequal discharge of ACh, which anni-
hilates hippocampal neurons and induces learning
and memory impairment in mice in a dose-related
manner108,109. However, the main effects of scopo-
lamine likely result from blockage of some receptors
(M1 and M5) due to their distinct distribution in
the brain110. Previous studies have also suggested
that it may lead to memory and learning deficit in a
dose-dependent way108,109. In some instances, or-
dinary doses of scopolamine led to agitation, con-
fusion, hallucination, paranoid behaviors, delusions,
and incoherent speech111. Previous studies have indi-
cated there is potential participation of N-methyl-D-
aspartate (NMDA) receptor mechanisms of the dor-
sal hippocampus in memory loss due to scopolamine
induction112. Currently, histone deacetylase-2 and
DNA methyl transferase-1 are important for synaptic
plasticity induced by scopolamine after a decrease in
memory113. Hippocampal administration of scopo-
lamine occludes long-term potentiation114 and im-
pedes spatial encoding115.
Furthermore, the injection of scopolamine into the
medial septum impedes learning and decreases ACh
discharge into the hippocampus116, injection of
scopolamine in the CA3 area of the hippocampus in-
duces encoding impairments selectively, but memory
retrieval in Hebb-William maze was not affected117.
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Indeed, scopolamine has been identified to cause spa-
tial learning and memory deficiencies. Consequently,
it leads to the excitation of glycogen synthase kinase-3
beta (GSK-3β ), inadequate spine maturation, and the
arborization of dendrites connected with alterations
in CREC, Homer1, and amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid receptor (AMPA) 118.

Colchicine-induced AD-like symptoms

Advances in chemicals used for modelling AD have
suggested that colchicines are potential drugs that
induce dementia through dysfunctional choliner-
gic neurons by either inhibiting cholinergic rever-
sal or eroding cholinergic passage cascades 119,120.
Colchicine induces hippocampal lesions resulting in
cognitive impairments and ChAT reduction, sug-
gesting that it can be utilized as a candidate for
modelling AD. Colchicine could cause neurotoxicity
and memory decline by inhibiting cholinergic path-
ways, thereby leading to a reduction in the number
of cholinergic neurons and subsequently decreasing
cholinergic renewal primarily within the hippocam-
pal area of the brain121. Memory impairment seen
induced by colchicine may be a result of a decrease
in serotonin, dopamine, and norepinephrine within
the caudate nucleus, hippocampus, and entire cere-
bral cortex122.
Furthermore, colchicine was shown to cause the pro-
duction of protein carbonyls following lipid peroxi-
dation123. Colchicine has also been found to raise
cyclooxygenase-1, and 2 (COX-1 and COX-2) expres-
sion levels124 and ROS generation125. Colchicine
raises glutamate/GABA ratio in the cortex126 and
triggers excitation of MDA receptors that lead to
a sharp rise in the influx of Ca2+, therefore re-
sulting in the triggering of enzymes that depend
on Ca2+ (e.g. phospholipases A2, xanthine ox-
idase, proteases, cyclooxygenases, and protein ki-
nases) 127. Intracerebroventricular (ICV) administra-
tion of colchicine (7.5 g in 10 L) was found to re-
capitulate cognitive memory decline in rats128 and
similarly in mice119. A significant memory deficit
was observed two weeks after cognitive induction im-
pairment using colchicine119. Furthermore, 3 g/mice
(ICV injection) of colchicine induces spatial memory
impairment129. The main advantage of this model
is the fact that it causes some symptoms of sporadic
Alzheimer’s type of dementia, similar to those found
seen in human subjects, like time-variant changes in
onset, behavioral, and biological patterns123.

Streptozotocin-induced AD-like cognitive
decline
Streptozotocin (STZ), a compound derived from glu-
cosamine nitrosourea and found in the strain of Strep-
tomyces achromogenes, when administered ICV in ro-
dents130, is known to exert a severe and long-lasting
effect on the brain’s cytoarchitecture, biochemistry,
metabolism, and functions (such as decreased glu-
cose uptake and energy consumption, oxidative tis-
sue stress, cholinergic differential, and cognitive abil-
ities). STZ is another alkylating agent used in can-
cer treatment. It has also been found to mimic cer-
tain properties of nitrosourea, an anti-cancer agent
that has been reported to have hypoglycemic effects
in addition to being involved in memory damage110.
Induction of neuronal damage and hyperphosphory-
lation of tau is caused by STZ, resulting in the release
of ROS and reactive nitrogen species (RNS)131. Find-
ings revealed that STZdestructs the glycolytic enzyme
activity within the brain which eventually results in
the lowering of ATP and creatine phosphate concen-
trations. This destructed energy system and lowered
acetyl CoA synthesis can inhibit cholinergic conduc-
tance130. Rats induced by STZ have been reported to
demonstrate raised activities of AChE in their brains
and decreased ACh. In other studies, STZ has been
found to activate Aβ peptide-like aggregates by mod-
ifying the GSK alpha/beta132.
Furthermore, there is evidence that gene expression
associated with the development of glial-derived NF,
brain-derived neurotrophic factors (BDNF) and inte-
grin –alpha-M becomes increased by STZ, while ex-
pression of genes forNGE-IB andmetallothionein 1/2
is down-regulated and eventually results in the modi-
fication in apoptosis and cell survival process133. Ad-
ministration of ICV-STZ resulted in a substantial de-
crease in memory and learning skills of rats, lead-
ing to oxidative stress134. Additionally, ICV admin-
istration of STZ (3 mg/kg) in a model of cognitive
impairment in rats mimicked the sporadic demen-
tia of AD135. Memory impairment was observed in
the rats during the last phase of the experiment us-
ing the Morris water maze (MWM) task in order to
assess AD-like symptoms. In addition, impaired glu-
cose metabolism, a decrease in cholinergic markers,
and oxidative stress were seen in the rats’ brains. Alto-
gether, these long-lasting effects mimicked those seen
in AD patients.
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Table 1: Studies showing Alzheimerogenic Chemicals

teBehaviour
Biochemical
Assay

Histopathology Ref

1. 1
Rats Al 150 – 170 g

3 times 
a week
50 mg/kg
90 days
Orally

Short-term &
long term
cognitive 
disturbance

activity

↓ AChE
↓ CAT, GSH

-Neuronal loss 
-Vacoulated 
cytoplasm

136

1. 2
Female
Sprague-
Dawley
Rat

Al. Cu &
Fl
Orally

170 – 200 g
50, 5 & 20
mg/kg
40 days

Significant
learning
deficit

↓ GSH, SOD
↓ GST & GPx

↑ proinflam-
matory
TNF-α
IL-1β & IL-12
↑ AChE
↑ APP gene
expression
& Aβ42 level
Aβ accumula-
tion,
oxidative stress

-Degeneration of 
pyra-midal neurons 
with Pyknotic nuclei 

-Swollen neurons & 
vacoulation Apoptotic 
cells

-Neuronal 
degeneration with 
eisonophilic 
accumulation

137

1. 3
Rats Rats

AlCl3
Orally

180-200 g
300 mg/kg
60 days

Memory 
impairment
Spatial Learn-
ing &memory

↑ AChE 
activity

↑ proinflam-
matory
cytokines
TNF-α ,
IL-1 & IL-6
↑ BDNF
mRNA levels

↓ CAT, GSH,
GST & MDA
levels in
hippocampus

Neuronal loss
pyknosis in CA1
& CA3

2

1. 4
Rats Rats

AlCl3
Orally

250-300 g
17 mg/kg
21 days
12—15
weeks old

Impaired
cognitive
function
Decrease in
time to reach
food & 
deteriorated
memory

↑ IL-6 
neuro-toxicity
due to NO &
ROS

↓ AChE
 activity
↓ ACh
↓ BDNF
↓ DA
↓ TAC
Aβ  plaques
formation

-↓ in cells in granular 
-& pukinje layers 
-Thin irregular 
reduction in cell
-cell size of 
molecular layer
-Sparsely distributed 
cells 
-Neurodegeneration 
in cortex
-DNA damage

138

AChE: acetyl cholinesterase, ACh: acetylcholine, ChAT: cholineacetyltransferase, MDA: Melondialdehyde, SOD: Superoxide dismutase,
iNOS: inducible nitric oxide, GSH: glutathione, GPx: glutathione peroxidase, CAT: catalase, DA: dopamine, BDNF: brain derivedneurotrophic
factors, NO: nitric oxide, ROS: reactive oxygen species, TAC: total antioxidant content, OG: oral gavage, ICV: intracerebroventricular, IH: in-
trahippocampal, SC: subcutaneous, SCM: Scopolamine, STZ: Streptozotocin, OKA: Okadaic acid, CLC: Colchicine, SD: Sprague-Dawley, IP:
intraperitoneal, ↑: increase, ↓: decrease,↔: unchaged, LPS: Lippolyssacharide, TNF-α : Tumor necrosis factor, NFTs: neurofibrillary tangles,
COX-2: Cytocrome oxidase, TBARS: Thiobarbituricacid reactive substance, MPO: Myeloperoxidase, GST: Glutathione S-transferase, GFAP:
Glial fibrillary acid protein
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Table 2: Studies showing Alzheimerogenic Chemicals (Continued)

S/N Species Chemical Age/weight/route
of administration Behaviour

Biochemical
Assay

Histopathology Ref

1. 5
Rats AlCl3 + 

D-gal
OG & IP

280-300 g
10 weeks
300 mg/kg
60 mg/kg

Memory and
Learning
deficits
Spent short
time in the target
quadrant

↑ AChE 
activity

↑ Protein 
expression

Neurodegeneration 
in hippocampal 
neurons 
Amyloid-like 
deposit

103

1. 6
Rats ICV/STZ 280-300 g

0.5 mg/kg
(3-5 weeks)
1 mg/kg 
(9-11weeks)
3 mg/kg

Severe 
impairment in
working memory

↓ChATmRNA

↓ IR expression

Astrogliosis
dark neurons
indicating neu-
rodegeneration
↓ Astrocytes
in DG, CA1 &
neuronal death

139

1. 7
Rats ICV/STZ 350-400 g

2 mg/kg
3-4 months

Cognitive 
impairment

↓ Synapto-
physin

Neuronal loss
Ventricular
enlargement
p-tau & Aβ
peptide 
accumulation

140

1. 8
Mice ICV/STZ

Single dose
20-25 g
2 weeks

Learning &
memory perfor-
mance ↓ in mean
time spent
in a quadrant by
MWM
Deficit in spatial
learning
impairment in
novelty in
seeking behaviour

↓ α-secretase
activities
↓ cerebral
Aβ42, β -
secretase &
COX-2

Aβ deposits 141

1. 9
Rats ICV/STZ 220-25 g

5 µ l
3 months

Deficits in spatial
learning & 
memory in MWM &
passive avoidance
task

↑ Oxidative
stress
↓ GSH
↑MDA levels

Aβ  deposits 
Shrunken 
pyramidal
cell layer & 
organisation 
Cellular infiltration

& congestion
Apoptotic cells &
neuronal loss

142

AChE: acetyl cholinesterase, ACh: acetylcholine, ChAT: cholineacetyltransferase, MDA: Melondialdehyde, SOD: Superoxide dismutase,
iNOS: inducible nitric oxide, GSH: glutathione, GPx: glutathione peroxidase, CAT: catalase, DA: dopamine, BDNF: brain derivedneurotrophic
factors, NO: nitric oxide, ROS: reactive oxygen species, TAC: total antioxidant content, OG: oral gavage, ICV: intracerebroventricular, IH: in-
trahippocampal, SC: subcutaneous, SCM: Scopolamine, STZ: Streptozotocin, OKA: Okadaic acid, CLC: Colchicine, SD: Sprague-Dawley, IP:
intraperitoneal, ↑: increase, ↓: decrease,↔: unchaged, LPS: Lippolyssacharide, TNF-α : Tumor necrosis factor, NFTs: neurofibrillary tangles,
COX-2: Cytocrome oxidase, TBARS: Thiobarbituricacid reactive substance, MPO: Myeloperoxidase, GST: Glutathione S-transferase, GFAP:
Glial fibrillary acid protein

3468



Biomedical Research and Therapy, 6(11):3460- 3484

Table 3: Studies showing Alzheimerogenic Chemicals (Continued)

Behaviour
Biochemical
Assay

Histopathology Ref

1. 10
Rats ICV/STZ 300-340 g

3-4 months
30 days

- Memory 
impairment 
- Decrease in time 
spent 
- In closed arm 0/OFF

Neuro 
inflammation

↓ Cell 
propagation

of marker Ki-67

& immature
neurons

DCX in SVZ

143

1. 11
Rats IP/SCM 150- 250 g

20 g/kg

- Deficits in short-
term 
- Spatial memory seen 
- is decrease time 
spent 
- on new arm Using Y 
- Maze
- Short-term 
recognition

- Memory deficit
- ↑ conditional 
avoidance

↑MDA
↑ Lipid peroxi-
dation
↓ GSH level
↑ AChE activ-
ity

Degeneration

of neurons
with pyknotic
& condensed
nuclear

Gliosis

144

1. 12
Rats IP/SCM 200-220 g

1 mg/kg
- Severe memory 
impairment
- (ST & LT in 
hippocampus)
- Delayed latency in 
MWM
- & frontal 
dependent memory
- Task

Occluded
cholinergic

signals

Altered 
cortico

-hippocampal

neurons

Retraction
process in
pyramidal cell

Layer

Vacoulation of
surrounding
neutrophils
of pyramidal
cells &
hyperchromatic
& shrunken
perikaryo
Cork-screw
shaped apical
dendrites

145

Continued on next page

3469

S/N SpeciesChemical Age/weight/route

of administration

↓ in proliferation



Biomedical Research and Therapy, 6(11):3460- 3484

Table 3 continued

Behaviour
Biochemical
Assay

Histopathology Ref

1. 13 2.5 mg/kg
1 hour

-Memory impairment ↑ AChE activity

↓ GABA

&GSH

Neuronal
degeneration
Hippocampal
Phalomalacia
& Oedema in
tissue matrix
with
de-myelination
Congestion
of blood
Capillaries
Perivascular
Oedema in
cortex

146

1. 14
Mice IP/SCM 20-25 g

1 mg/kg
8 weeks old

↓ mRNA 
expression
↔ AChE

- 147

1. 15
Mice IP/SCM 17—24 g

10 mg/kg
7- 12 weeks

↑ Cholinergic
neurones

- 148

1. 16
ICV/
CLC

200-260 g
7.5 µg in 
2.5µl aCSF

-Impairment of 
learn-ing & memory 
-Impairment of 
acquisition of ST & LT 
-Impaired memory
-↓ ambularv 
movement
-Deficits in 
social recognition 
- Memory loss ↑ TNF-α

↑ ROS, COX2
Nitrite

- 149

1. 17
Rats ICV

/CLC
180-200 g
15 µ 1/5 µ l
aCSF
21 days

Significant memory 
loss 
Learning & memory 
deficits

↓ GSH, SOD,
GST
↑MDA levels
Oxidative
damage
↑ AChE activity

Destruction
of neurons

150

1. 18
Rats ICV

/CLC
180-200 g
15 µ1/15 µ l
aCSF

Cognitive impairment ↑MDA level
↔ CAT
↓GSH
↓ AChE

Neuronal loss 151

1. 19
Rats ICV

/CLC
180-200 g
15 µ1/rat
3 weeks

Learning and learning 
deterioration 
Memory impairment 
Impaired acquisition 

of spatial navigation 
task

↓GSH, 
Oxidative stress
↑ ROSAβ pep-
tide deposit in
hippocampus

Neuronal
damage
↓ hippocampal
 tissue
levels of
BDNF
Aβ deposits
in
hippocampus

152

Continued on next page
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Table 3 continued

Behaviour
Biochemical
Assay

Histopathology Ref

1. 20
Rats/
Mice ICV/

CLC

200-250 g
20-30 g
7.5 µ l in 2.5
µ l 6-8 weeks
old

Memory impairment ↑ TNF-α , IL-113

↑ ROS& nitrite

Neurodegeneration

Plaque 
formation
Reduction

of Nissl
granules

153

1. 21
Rats IH/OKA 200-320 g

90 days 
100 ng 
12 days

Decrease in time find-
ing platform
Spatial cognitive

↓ Glu syn-
thetase 
↓ GSHOxidative
stress

Gliosis 
Astrogliosis
↓ GFAP
expression

154

1. 22
Rats ICV

/OKA
300-380 g
100-200 ng

Spatial cognitive 
deficit Significant 
↓ in time to find 
platform

↓ GSH
Oxidative
Stress Tau
phosphory-
lation site at
396

Gliosis
p-tau-like 
formation

155

1. 23
SD
Rats

ICV
/OKA

220-250 g
200 ng
13 days

Memory deficit
Poor memory perfor-
mance

↑ MDA &
Nitrite ↓
GSH & Lipid
peroxidation

Loss of
pyramidal
Blabbing
of cells in
the brain &
sponginess
Synaptic
dysfunction

156

1. 24
Mice ICV

/OKA
20-22 g
200 ng
2 times
3 days 
interval

↓ GPx
↑MDA
mitochondrial
cells

Neuronal
damage 

Reduced 

bodies 
Neurofibrillary
degeneration

157

1. 25
18-22 g
12 mL/g 
Once daily 
1st week 
Twice daily 
after 1st 

week

Cognitive 
impairments 

Short distance 
covered during 
spontaneous
movement

↑ TNF-a &IL-ß

↓ Glu & GABA
Neurotrans-
mitter
imbalances

Neuronal loss 

↓ in microglial 
cells

 ↓hippocampal 
DG cells

158

1. 26
SD
Rats

257-300 g
5 g/kg
Days 2 & 4

Learning & memory
deficits

↑ TNF-α in
Hippocampus
↔ IL-10 BDNF

Shorter 
microglia 
Lack of ED-1
positive cells

159

Continued on next page
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Table 3 continued

Behaviour
Biochemical
Assay

Histopathology Ref

1. 27 Rats 180-200 g
396-426 g 
(after long 
exposure)

Memory impairment ↑ IL-15 gene
NSD alter long
term exposure

Reduction in
the microglia
shortening &
of processes
with brush
appearance

160

1. 28
SD
Rats

l

4.5
mg/kg

200-300 g
21 days

↑ AChE 
activity

Neuronal
death 
Apoptotic cells
Neurodegen-
eration

161

1. 29
Rats l

4.5
g/kg

170-220 g
21 days

Cognitive impairment ↓ AChE 
activity 
Oxidative stress

- 162

1. 30
SD
Rats

ICV/LPS
2
ul/1min

200-220 g
21 days

↑ IL-IB in
hippocampus
↑ TNF-e &
COX-2
↑NF-Kb, iNOS
mRNA

- 163

1. 31
Mice IH/LPS

40

single
admin

18-22 g
7 days

↓ TNT-α , NO
& IL-6
Activation of
microglia in
hippocampus
CA1 & DG

Reduction in
NeuN stained

↓ in number
of DCX 
positive cells

164

1. 32
ICR
Mice

IP/LPS
250
ul/kg
7 times
Daily

-

↓ discrimination in-
dex in novels object 
discrimination
-Loss of spatial 
memory
-Reduction in 
sniffing times
-Less platform-cross 
number
-Learning & 
memory impairment 
-Treated mice took 
longer time to find 
platform using
-MWM 
-Spontaneous 
alter-ation in Y-Maze 

Memory deficit 
Spent longer time in a 
target quadrant

↓ IL-1β , IL-6
& TNF-α
↓ GSH/GSSG
↓ COX-2,
iNOS
↓ MDA 
content

Brown
coloured
labelled
(Aβ42) cells
in the 
hippocampus
Higher GFAP

Iban1-
reactive
cells

165

1. 33
SD
Rats

lP/LPS

10
mg/kg
Single
dose

250 g
7 —9 days

↑ TNF-α , 
IL-1ß &
lL-6

Deposits of
Aβ
plaques
P—tau 
inclusions
in the brain

166

Continued on next page
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Table 3 continued

Behaviour
Biochemical
Assay

Histopathology Ref

1. 34
ICR
Rats

IP/LPS

0.25
mg/kg

2months old

21 days

- Deficits in 
spatial memory
- Decrease in latency

↑ Aβ 342 in
cortex
& 
hippocampus

↑ β -secretase
activity

↑ γ -secretase
in
Hippocampus
&
Cortex
↑ iNOS, COX-
2 & GFAP

Gliosis
in cortex &
hippo
evidence by
thick
& short
processes

167

1. 35
SD
Rats

SC/NAN3

4—51

(mini
pumps)

300-320 g
31 days

Learning & memory
deficits
Weaker cognitive per-
formance

↓ ChAT &
AChE
activity

Pycnotic
nerve cells
Nerve cell loss 
Corkscrew-
like dendrites 
Positively
stained 
gran-ules by 
AT8-positive 
(tau)
granule

168

1. 36
Rats IP/AN3

12.5
200-250 g
5 days
9 days

-Impairment of 
learning & memory 
-Spent more time 
explore target 
-quadrant

↓ GSH levels
↑ AChE, 
Nitrite
↑TBARS,
MPO
Cytochrome C
NO

Neuronal loss 169

1. 37
SD
Rats

SC/
NAN3  400-425 g

1 mg/kg/h 
7 days

-Impairment of 
learn-ing & memory
-Spent more time 
explore target 
-quadrant

↓ Cytochrorme
C
↔ NO

- 170

AChE: acetyl cholinesterase, ACh: acetylcholine, ChAT: cholineacetyltransferase, MDA: Melondialdehyde, SOD: Superoxide dismutase,
iNOS: inducible nitric oxide, GSH: glutathione, GPx: glutathione peroxidase, CAT: catalase, DA: dopamine, BDNF: brain derivedneurotrophic
factors, NO: nitric oxide, ROS: reactive oxygen species, TAC: total antioxidant content, OG: oral gavage, ICV: intracerebroventricular, IH: in-
trahippocampal, SC: subcutaneous, SCM: Scopolamine, STZ: Streptozotocin, OKA: Okadaic acid, CLC: Colchicine, SD: Sprague-Dawley, IP:
intraperitoneal, ↑: increase, ↓: decrease,↔: unchaged, LPS: Lippolyssacharide, TNF-α : Tumor necrosis factor, NFTs: neurofibrillary tangles,
COX-2: Cytocrome oxidase, TBARS: Thiobarbituricacid reactive substance, MPO: Myeloperoxidase, GST: Glutathione S-transferase, GFAP:
Glial fibrillary acid protein
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Ethanol/Alcohol induced AD-like symp-
toms
Chronic intake of alcohol is associated with many
problems including attention deficits, impairment in
language and social skills, hyperactivity, motor dys-
function, and learning deficits171. Previous studies
have shown that ethanol consumption enhances the
generation of ROS and results in a decrease of the
antioxidants in the brain172. Another finding has
suggested that ethanol could damage hippocampal
and cholinergic neurons with a resultant effect on the
sensory-motor system as well as disruption of learn-
ing and memory173. High ethanol treatment resulted
in excessive nitric oxide (NO), which has been found
to destruct memory and learning, while higher doses
of ethanol disrupted the glutamatergic system and in-
creasedGABAergic conveyance in the brain areas that
are associated with memory 173. Ethanol also elevates
the level of adenosine, which may, in turn, lead to
memory damage174 and can result in a shorter route
by accelerating memory impairment and promoting
active, spontaneous motion.
Furthermore, results obtained following the MWM
test in mice showed a notable increase in escape la-
tency and total swimming distance, with a sharp drop
in cross time. Thus, chronic alcohol administration
can significantly affect spatial learning ability and
cognition by mice175. However, memory impair-
ment caused by prolonged alcohol intake can be ob-
served from the anti-inflammatory activity and from
the control of the equilibrium of Glu and GABA176.
The particular molecular mechanisms still need fur-
ther investigations, but overall, alcohol can signifi-
cantly disrupt learning and memory.

Memory deficit induced by excitotoxin
Ibotenic acid is a strong neurotoxin that aggravates
signs and pathophysiology analogous to AD 177,178.
It is a useful model to appreciate drug efficiency in
evading AD pathology. It has also been found that
intrahippocampal administration of ibotenic acid
(5 µg/µ l PBS) produces memory impairment and
results in increased AChE activity as well as ele-
vated MDA levels, thereby inducing neuronal tox-
icity179. Bilateral ICV injection of ibotenic acid
may elicit AD-like pathology and symptoms. In-
deed, a particular study found that ibotenic acid
decreased the activity of cholinergic neurons in
rats180. Many other cholinotoxins and neuro-
toxins that present AD-like symptoms are kainic
acid, quinolinic acid, anti-NGF, NMDA antago-
nist dizocilpine, and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA). Previous studies

have reported that intrahippocampal kainic acid (0.4
µg/2µ l) administration led to oxidative damage (re-
vealed by the increase of hippocampal lipid peroxida-
tion, nitrite level, and diminished superoxide dismu-
tase (SOD)). Thus, it is clear that kainic acid activates
oxidative damage and memory loss in rats181. Stimu-
lation of glutamate receptors, particularly NMDA re-
ceptors, in a diseased condition can lead to disrupted
ion homeostasis, decrease in energy, neuronal loss,
and cell death (excitotoxicity) by an abnormally high
concentration of glutamate182,183.

Sodium azide-induced AD-likememory im-
pairment
Sodium azide (NaN3) is a white crystalline solid that
has been reported to be a mitochondrial toxin im-
plicated in the production of lead azide explosive184.
NaN3 administration has been known to induce
mitochondrial dysfunction and inhibit cytochrome
oxidase, a critical mitochondrial enzyme169. Cy-
tochrome oxidase is critical in the mitochondrial res-
piratory chain; its interference impedes with mi-
tochondrial complex-IV and decreases ATP levels,
which add to metabolic impairment and ROS gener-
ation170, ultimately producing some sequelae of AD.
Neuronal loss in the CA3 area of the hippocampus is
one of the essential features used to confirm the in-
duction of AD using minipumps to deliver NaN3.
However, due to high cost, one-time usability and
long treatment time, minipumps are unlikely to be
useful tools for screening. A new technique was de-
veloped to provide an AD-like dementia model by
selective cytochrome C complex inhibition using an
intraperitoneal injection of NaN3 in different doses
(10-15 mg/kg/day) in rats. The intraperitoneal in-
jection dose-effect-interdependence study employed
mitochondrial poison and developed a complex test
system to research changes in cognitive functions in-
duced by treatment with NaN3. It has been shown
that NaN3 administration impairs learning andmem-
ory, and increases AChE levels in the brain169. NaN3

was reported to cause oxidative damage that resulted
in neuronal cell death. The progressive loss of neu-
rons and necrosis were observed in the cortical and
hippocampal areas of treated rats, thereby further in-
dicating the potency of NaN3. These researchers con-
firmed that intraperitoneal injection of NaN3 for 15
days resulted in a comparable level of dementia us-
ing implanted osmotic minipumps in rats, ultimately
suggesting the involvement of NaN3 in inducing neu-
rodegenerative disorder185.
A growing body of knowledge has reported that ox-
idative stress (Figure 1) is a trigger, as well as one
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of the critical molecular changes for AD commence-
ment186. Oxidative stress may be caused by inhibi-
tion of mitochondrial function. The mitochondrial
enzyme, Cytochrome oxidase (COX), has long been
established to be predominantly implicated in aer-
obic energy metabolism and mitochondrial tasks in
AD patients187. Brains of AD patients have shown
some mitochondrial abnormalities, particularly of
CoX type. The primary toxic effect of NaN3 has been
identified as decreasing the action of CoX in the mi-
tochondrial electron transport chain185.

LPS-induced AD-like symptoms

LPS has been known to be used in various experi-
ments, both in vitro and in vivo models of amyloi-
dosis and neuroinflammation188,189. A variety of
neurodegenerative diseases, namely AD 189, Parkin-
son’s disease 190, amyotrophic lateral sclerosis191, and
multiple sclerosis192, have been modeled using LPS-
induced systemic inflammation (Figure 2). LPS is ex-
tracted from the externalmembrane of gram-negative
bacteria. It has been reported as a strong endo-
toxin with resistivity to degradation by mammalian
enzymes, therefore resulting in continual inflamma-
tory stimuli193, which produce proinflammatory cy-
tokines. These proinflammatory cytokines stimulate
both neuroimmune and neuroendocrine systems 194

that lead to virtually similar feedback formed by be-
havioral stress195. Inflammation has been reported
to be crucial in AD pathogenesis. However, the ex-
actmechanisms throughwhich it participates remains
to be elucidated. Inflammatory proteins in the blood,
two of which are C reactive protein (CRP) and IL6,
have been reported to increase several years before the
onset of clinical dementia in different studies 12,196.
Inflammation is one of the factors that cause AD,
although the link between infections and AD etiol-
ogy has been an issue of debate for more than three
decades 197. Previous studies have indicated that the
expression levels of TNF-α , IL-1β , and IL-6 within
the hippocampus are upregulated in comparison with
those of control following three days of LPS adminis-
tration198. Proinflammatory cytokines have already
been found as the critical molecules which modulate
immune responses; inability to reverse them during
chronic inflammation would increase dyshomeosta-
sis198. Moreover, long-standing microglia activation
which facilitates inflammatory mediators release, re-
sulting in enhanced oxidative stress and nitrosative
stress, is characterized by chronic inflammation 199.

Okadaic acid-inducedmemory impairment
Okadaic acid (OKA), amajor polyether toxin, is ama-
rine microalgae product that causes diarrhetic shell-
fish toxicity200. IC injection of OKA has been re-
ported to induce memory decline in rats, therefore
making it a valuable model agent to study for anti-
dementia drug screening201. In terms of mechanism
of action, OKA has been found to be a restrictive and
modest antagonist of serine/threonine phosphatases
1 and 2A202,203, is associated with short- and long-
term memory disruption in rats204, and triggers tau
hyperphosphorylation (Figure 2) and neuronal cell
death both in vivo205 and in vitro206. Previous find-
ings have identified that OKA decreases basal synap-
tic transmission and inhibits the commencement of
synaptic plasticity207. Also, OKA has been found to
augment Ca2+ in a cultured hippocampal neuronal
cells by ionotropic excitatory amino acid receptors,
thereby leading to loss of neurons208.
Furthermore, research has demonstrated that OKA
triggers the production of ROS in the hippocampus
and reduces mitochondrial activity and mitochon-
drial potency, ultimately resulting in mitochondrial
abnormalities in the brain of rats201. Additionally,
OKA has been known to inhibit phosphatases and
cause hyperphosphorylation of proteins which sub-
sequently leads to neuronal stress and ultimately to
neurodegeneration201. Previous findings revealed
that OKA-mediated memory decline in rats is linked
with exacerbated proinflammatory cytokines, such as
TNF-α and IL-1, and with iNOS expression and total
nitrite in the hippocampus and cortex209. Further-
more, infusion (bilateral) of OKA in the hippocampus
produced spatial cognitive deficit as a result of raised
GFAP expression, decreased GSH, and enhanced pro-
tein carbonylation and mitogen-activated protein ki-
nase 38 (p38MAPK)210. Several kinases, includ-
ing MAPK, GSK-3β and cyclin-dependent kinase 5
(Cdk5), have been identified to be implicated in the
phosphorylation of tau protein at different positions
seen in AD hyper-phosphorylated tau211,212. Mean-
while, tau dephosphorylation is catalyzed through
phosphatase PP2A and other phosphatases (PP1, 2B,
and 5)213,214. The precise blocking of PP2A by OKA
could result in Alzheimer-like hyperphosphorylation
and aggregation of tau in vivo215 and in vitro216,217.
Memory loss due to OKA (intra-hippocampal) in-
jection has been documented to be linked with ap-
parent neuropathological changes, such as the forma-
tion of Aβ peptide-like structures, helical filament-
like phosphorylated tau, and neurodegeneration in
the hippocampus210. OKA is an essential means for
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Figure 2: Alzheimerogenic chemicals and some mechanisms used to induce AD. The figure showed some
insults underlyingAD, the chemicals here inducedAD-like cognitive impairmentsdue to the individualmechanism
of action. Chronic or acute exposure to any of these chemicals by the brain is associated with one or more of the
pathophysiology contained in the box (dotted line). Adapted from Lee et al., 2018 188 .
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analyzing218 the cellular mechanisms involved by re-
versible protein phosphorylation during cell division,
signal transduction, and formation of memory217. At
present, drugs that act by blocking tau phosphoryla-
tion are not available. Thus, this suggests that OKA
could be a useful replacement tool towards unravel-
ling therapeutic approaches for AD pathology 198.

CONCLUSION
Several chemicals have been established in order to
unravel AD etiology and screen many possible ther-
apeutic agents. This applies especially to aging, Aβ ,
aluminum, and D-galactose models, among others.
Nonetheless, it is worthy to note that none of the avail-
able models recapitulates the exact pathology of AD,
although every model is known to have its benefits
and triggers a few of the pathophysiology linked with
AD. Heavy metals, scopolamine, alcohol, and LPS are
among the chemicals with proven neurotoxicity and
have been used to induce AD-like cognitive impair-
ment in rodents. Each chemical may act via spe-
cific mechanisms that differ in order to exacerbate
AD pathogenesis. Thus, the dosage, as well as the
time in which the chemical is administered in the AD
models of rodents, may be higher or sometimes lesser
to induce severe disease in human subjects. Impor-
tantly, other factors associated with the Alzheimero-
genic chemicals are the route of administration, na-
ture, duration (especially), as well as age and gender
of the animals tested. This understanding is critical
in order to design research that involves chemically-
induced cognitive impairment.
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BDNF: brain derived neurotrophic factors
NO: nitric oxide
ROS: reactive oxygen species
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IP: intraperitoneal
↑: increase
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TNF-α : Tumor necrosis factor
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