
Original Research

1Department of Biochemistry, Covenant
University, Km 10 Idiroko road,
Canaanland, Ota, 23401, Nigeria
2Biological Sciences Department,
Covenant University, Nigeria

Correspondence

Titilope M. Dokunmu, Department of
Biochemistry, Covenant University, Km
10 Idiroko road, Canaanland, Ota, 23401,
Nigeria

Email: titi-
lope.dokunmu@covenantuniversity.edu.ng

History
• Received: 25 June 2018
• Accepted: 31 August 2018
• Published: 24 September 2018

DOI :10.15419/bmrat.v5i9.474

Copyright

© Biomedpress. This is an open-
access article distributed under the 
terms of the Creative Commons 
Attribution 4.0 International license.

Evaluation of Plasmodium falciparum K13 gene polymorphism
and susceptibility to dihydroartemisinin in an endemic area

Titilope M. Dokunmu1, ∗    , Grace I. Olasehinde2     , David O. Oladejo1, Cynthia U. Adjekukor1, Adesola E. 
Akinbohun1, Olabode A. Onileere2, Chisom J. Eze1, Grace S. Jir1

ABSTRACT
Introduction: Plasmodium falciparum has developed resistance to artemisinin drugs in Southeast 
Asia, and its reduced sensitivity has been reported in other regions. This study aims to determine 
parasite susceptibility to the bioactive form of artemisinin derivatives- dihydroartemisinin (DHA)-, 
and to detect the K13 polymorphism in isolates from an endemic area of Nigeria. Methods: Ex-vivo 
response in 55 parasites isolates obtained from malaria-positive patients were exposed to pulseDHA 
concentration and cultured for 66 hours ex-vivo. Parasite ring stage survival (RSAex-vivo) relative to 
unexposed matched control was determined by microscopy, and parasite growth was compared 
using Mann-Whitney U-test at a significance level of P<0.05. The Kelch propeller gene was amplified 
using specific primers, then sequenced and analyzed for single nucleotide polymorphisms (SNPs), 
which were compared to reference PF3D7_1343700. Results: Overall, 151 of 375 (40.2%) individ-
uals were positive during the study period. In 55 selected isolates, there was increased growth in 
unexposed wells but growth was inhibited in DHA-exposed wells, with growth rate between 14.9 –
96.7%. The mean RSAex-vivo value was 0.18 ± 0.09%, 95% CI (0.15-0.20). There was no significant mu-
tation of the K13 gene in the parasite isolates evaluated. Conclusions: Plasmodium falciparum iso-
lates from this endemic area show high sensitivity to dihydroartemisinin ex-vivo, with no mutations 
conferring artemisinin resistance. Continuous monitoring of parasite susceptibility to artemisinin 
combination drugs should be intensified to reduce chances of artemisinin resistance in endemic 
areas.
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INTRODUCTION
Artemisinin combination treatments (ACTs) have
been widely adopted for the treatment of falciparum
malaria control globally 1. However, in some areas
in Southeast (SE) Asia, artemisinin-resistant parasites
have emerged 2–8. In highly endemic African coun-
tries, it is essential to constantly monitor suscepti-
bility to artemisinin derivatives and ACTs. In Asia,
an emergence of artemisinin-resistant parasites have
been confirmed with declining sensitivity in-vitro and
in-vivo to artemisinin 9–12, whereby the parasites re-
main in quiescent or dormant state, and exhibit phe-
notypic delayed clearance from peripheral blood 13–15.
These parasites have ring stage survival value >1, de-
layed parasite clearance in-vivo, and polymorphisms
of the Kelch propeller (K13) gene that confers resis-
tance to artemisinin drugs 6–8,14–16. These form the
basis for detection and confirmation of parasite resis-
tance to artemisinin drugs globally 17.
Susceptibility of Plasmodium falciparum to non-
artemisinin drugs can be determined by compar-
ing IC50 values with a sensitive strain. However,

this method fails to correctly predict parasite sus-
ceptibility to artemisinin3. Determining the sur-
vival of the ring stage parasite in-vitro or ex-vivo is 
a more robust method for detection of susceptibil-
ity to artemisinins16. In Nigeria, reports of in-vitro 
declining response to artemisinin and its association 
with mutations of transporter genes have been previ-
ously reported18,19. Yet, there are few studies that as-
sess in-vivo or ex-vivo susceptibility of P. 
falciparum to artemisinin and assess the K13 gene 
polymorphism in the parasites; one study has 
reported no polymorphisms of the K13 gene in 
Nigerian isolates20. The World Health Organization 
(WHO) recommends continuous monitoring of 
responses to ACTs to curb the spread of resistance 
to other areas17. Therefore, the aim of this study was 
to evaluate the ring stage survival of P. falciparum 
isolates and the K13 gene polymorphism in a high 
malaria hotspot in Africa.
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METHODS
Study population
The study population was a cohort from a larger pop-
ulation of 375 individuals who were part of an on-
going community health survey in Ota, Nigeria, eval-
uating malaria prevalence and markers of antimalar-
ial drug resistance in an endemic area. Data from this 
population has been published in part previously 21. 
The sub-population included for the current study 
were children and adults (aged > 6 months) with 
P. falciparum mono-infection and parasitemia 
between 1-5% as detectable by microscopy. Persons 
with base-line parasitemia <1% were excluded from 
this eval-uation. Informed consent was sought 
from the par-ticipants and ethical approval was 
sought from local authorities and the Covenant 
Health Research Ethics Committee, Nigeria.

Sample collection
Venous blood from 55 malaria positive subjects who
met the inclusion criteria was taken aseptically into
EDTAbottles, and bloodwas spotted on slides for thin
and thick film microscopy to confirm P. falciparum
mono-infection. The samples were transported to the
laboratory on ice for further processing.

Laboratory analysis
Blood samples were washed twice in RPMI 1640
medium (Sigma Aldrich, USA), centrifuged at 2500
x g and made up to 1.5% hematocrit and 1% para-
sitemia. Ex-vivo ring stage survival assay (RSAex-vivo)
was performed within 24 hours of blood collection
without culture adaptation according to a previously
established method 16. Briefly, dilution of stock of
dihydroartemisinin (DHA) (1mg/mL) was made in
a final volume of 900 µL complete medium supple-
mented with pooled human serum, and 100 µL in-
fected erythrocyte suspension was added to test drug
wells and exposed for 6 hours; each sample was cul-
tured in triplicates. The samples were transferred to
a 1.5 mL tube and washed twice, then maintained in
culture for another 66 hours at 37◦C using the candle
jar method of Trager and Jensen 22. Drug-unexposed
wells for each sample served as control. The cul-
ture was terminated after 66 hours of growth and the
pellet from the suspension was used to make thin
smears, which were fixed in methanol and stained
with Giemsa for determination of ring stage growth
at 100x magnification by light microscopy. The pro-
portion of viable parasites (survival) in DHA ex-
posed/unexposedwells was expressed as a percentage.
RSAex-vivo values >1 was taken to indicate artemisinin
resistance 16,17.

Molecular analysis

Parasite DNA was extracted and amplified using pre-
viously published methods with primers specific for 
blade 6 of the K13 gene 6; next, 10 µL of the secondary 
product was resolved on 2% agarose gel to confirm 
amplification. These condary amplicons of a few 
isolates were sent for sequencing at Inqaba Biotech 
West Africa Ltd (South Africa). The sequences 
were deposited in GenBank with accession num-
bers MH464876-464887. Polymorphisms in the par-
asite isolates encoding the Kelch propeller (K13) pro-
tein were compared with PF3D7_1343700 reference 
gene (sequence region spanning region 1,724,817- 
1,726,997 bp of chromosome 13 downloaded from 
www.plasmoDB.org). The sequence was analyzed for 
molecular markers of artemisinin resistance: SNPs at 
codons Y493H, R539T, I543T, and C580Y, and any 
mutations of the gene (using Geneious software ver-
sion 11.6.1). The data are reported as mean ±  stan-
dard deviation, 95% confidence interval (CI) for con-
tinuous data; P-value of < 0.05 indicates a significant 
difference.

RESULTS
During the study period, a parasite prevalence of
40.2% (151 had detectable parasitemia) was recorded
from the cohort of 375 individuals tested for malaria
infection. From this population, 55 positive samples
meeting the inclusion criteria were cultured to eval-
uate the ex-vivo response of P. falciparum to DHA.
At baseline, the geometric mean parasitemia in the
55 samples was 1800/µL blood [95% confidence in-
terval: 1823 – 2974/ µL blood]. Themean age± SEM
was 9.82 ± 1.02 years, range [0.5 – 40 years], and 26
(47%) of them were males.

Ring stage survival rates

The parasite growth rate in drug unexposed control 
wells was significantly higher than exposed well (P < 
0.001), ranging from 14.9 – 96.7%. The mean value of 
parasite ring stage survival after 6 hours of DHA ex-
posure (RSAex-vivo) in the drug-exposed wells was 0.18
± 0.09%, 95% confidence interval [0.15 -0.20%]. Fig-
ure 1 shows the distribution of individual RSAex-

vivo values obtained after exposure to 700 nM DHA. 
One parasite isolate had a high RSAex-vivo value of 
0.8%. The amplified K13 gene from this isolate 
(C5) and other randomly selected samples are 
shown in Figure 2, with gene size of 849 bp.
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Figure 1: Ex-vivo ring stage survival (RSA ex−vivo) of P. falciparum to dihydroartemisinin in parasite iso-
lates.

Figure 2: Gel image of P. falciparum Kelch propeller gene (849bp) amplification in selected isolates.

K13 gene polymorphism
Six of the 55 (10%) isolates were analyzed for the K13 
gene polymorphism and compared with the reference 
3D7 strain using the standard bi-directional sequence 
alignment (Figures 3A, B and C). There were 
polymor-phisms of 2 isolates (C1 and C11) on single 
strands of the DNA (this was taken to be reading 
errors and not mutations). No SNPs were observed 
at codons C580, Y493H, R539T, I543T, R561H or 
N458Y, all of which are validated molecular markers 
of artemisinin resis-tance in the Mekong Sub-
region, Southeast Asia17. Similarly, there were no 
SNPs at codon A578S and A675V, which are K13 
polymorphisms reported in some African regions.

DISCUSSION
Development of resistance by P. falciparum to all an-
timalarial drugs (including artemisinin derivatives) is
a major problem limiting malaria elimination glob-
ally 17. In SE Asia, isolates resistant to artemisinin
have developed several mutations in the Kelch pro-
peller gene 5,6. Candidate markers which confer re-
sistance to other ACTs, such as dihydroartemisinin-
piperaquine 23, have been identified. Six of these

markers (i.e. SNPs at codon C580Y, Y493H, R539T,
I543T, R561H, and N458Y) have been validated as
artemisinin resistancemarkers in theGreaterMekong
sub-region 17. However, in Africa, reduced suscepti-
bility to artemisinin and ACTs 24 and limited muta-
tions in the Kelch 13 gene 17,20,25–27 with no associated
artemisinin resistance have been reported 28–33.
Continuous monitoring of parasite responses to indi-
vidual components of the recommendedACTs should
indicate any early emergence of resistance and serve
to preserve the efficiency of available anti-malarials
in endemic areas. In Nigeria, studies indicate that
malaria transmission is still high 21,34, with recent
studies from regions in Nigeria reporting high mu-
tations in genes that modulate response to non-
artemisinin drugs by P. falciparum 35–37. Conversely,
other studies have reported high in-vivo response after
ACTs with parasitemia half-life <5 hours, and 42-day
cure rates >90% 38. However, few studies elsewhere
have recently evaluated the WHO benchmarks for
artemisinin resistance using RSA value and K13 gene
polymorphism 17,20. From the mean RSA of 0.18%,
determined in the small parasite population evaluated
in this study together with nomolecular marker of re-
sistance, it can be implied that parasites susceptible to
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Figure 3A: Screen shot of sequence alignment of some segment of Kelch 13 gene from isolates 
compared with Plasmodium 3D7 sequence.

Figure 3B: Screen shot of sequence alignment of segment of Kelch 13 gene from isolates compared 
with Plasmodium 3D7 sequence (cont’d)

artemisinin are prevalent. Development of the ring
stage survival assay for the in-vitro or ex-vivo detec-
tion of artemisinin resistance abrogates the challenge
of inconsistent in-vitro results and provides a simple
tool for resource-poor countries for the detection of
artemisinin resistance even with small sample size 5,6.
The findings of the present study support previous re-
ports of limited artemisinin resistance in Africa 28–33.
This, however, does not undermine the need for con-

tinuous monitoring of response to artemisinin and
ACTs in endemic areas to mark the beginning of
declining resistance to both components of ACTs,
to prevent the consequences of high morbidity and
mortality in the future, and to curb the spread of
artemisinin-resistant parasites to Africa where conse-
quences will be intense 1. As part of strategies devised
to contain the spread of artemisinin resistance, ac-
tive monitoring of parasite responses and markers of
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Figure 3C: Screen shot of sequence alignment of segment of Kelch 13 gene from isolates compared 
with Plasmodium 3D7 sequence (cont’d).

artemisinin resistance in different areas is advocated
as regional differences in parasite response may exist
in Nigeria 38. A potential challenge will be to identify
and validate resistance markers if unique markers ex-
ist in other areas. It is pertinent to monitor possible
emergence in Africa from detected Kelch 13 SNP on
codonA578S reported in someAfrican countries (e.g.
Kenya) 8,25, M579I in China (apparently imported
from Guinea, Africa) 26, and A675V in Uganda 28, as
well as other un-validated non-synonymous SNPs 17

in regions outside of Southeast Asia.
A wide range of SNPs in the K13 propeller gene de-
veloping independently from Asia, Africa and other
regions 2–8,25–33 calls for further research on emerging
resistance and other factors that drive mutations in
the malaria parasite. Furthermore, chances of emerg-
ing artemisinin resistance will increase with increas-
ing resistance to the artemisinin drugs, as this will
gradually increase drug pressure on artemisinin in en-
demic areas where malaria transmission is high 21,34.
Since clinical drug failure attributable to artemisinin
has not been established, the genetic background of
P. falciparum isolates reported in this and another
study 20 will aid in the early detection of mutations of
the Kelch 13 domain in the parasite if artemisinin re-
sistance develops in Nigeria. Some limitations of the
current study include a small sample size of DNA that
was sequenced, as well as sampling was done only in
communities from one regional area (Ota, Nigeria).
This may not truly represent the entire parasite popu-
lation in the country.

CONCLUSION
This study reports a high susceptibility of parasites to
artemisinin and no K13 polymorphism in the study
area. As part of malaria elimination strategies, it
is recommended that large-scale genomic studies be
done routinely in the future to scale up monitoring
of responses to artemisinin and its partner drugs in
order to reduce the chances of development of resis-
tance.
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