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Background: There is a dearth of precise information for molecular and cellular mechanisms
responsible for the development of Alzheimer’s disease (AD). However, convincing data from
clinical research and basic molecular biology have shown that inflammation of the brain is an
integral part of AD. In this review, the role of inflammation in AD will be highlighted.
Methods: Articles from credible scientific databases, such as ScienceDirect, Scopus, PubMed, Google 
Scholar and Mendeley, were searched and retrieved using keywords ‘inflammation’, ‘Alzheimer’s 
disease’, ‘tau’, and ‘beta amyloid’. Results: At present, there is no local inflammatory-inciting factor 
that is closely associated with AD, although it has been proposed that inflammation could be 
induced by pathologic hallmarks of AD, such as beta amyloid (Aβ) peptide plagues and
neurofibrillary tangles (NFTs), or fragments of degenerated neurons. However, it is still unclear
whether inflammation leads to the development of AD or if the pathological hallmarks of AD 
induce inflammation. Conclusion: Inflammation is, indeed, an integral part of AD. Further studies 
on inflammatory-targeted therapies for AD are highly recommended.
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1. Introduction
Alzheimer’s disease (AD), the commonest cause of dementia among the elderly people, is an
irreversible and progressive neurodegenerative disorder that slowly destroys memory, thinking
skills, cognitive functions, and subsequently, the ability to carry out day-to-day activities [1]. With
the current rise of the aging population in both developed and developing countries, AD has
taken center stage as a global health challenge [2,3]. The presence of intracellular neurofibrillary
tangles and extracellular beta amyloid (Aβ) plaques in the brain are the two cardinal pathological
hallmarks of AD, even though several other hypotheses on the pathogenesis of AD have been
suggested and tested, such as neuronal loss, axonal injury, tau phosphorylation, and disturbance
of the neurotransmitter acetylcholine [4].

The amyloid beta hypothesis of AD is a highly favored one and the most commonly applied
hypothesis in the field of AD research. It has provided the rationale for the development of
various treatment modalities. The principle behind this hypothesis is that Aβ peptides produced
by the amyloid precursor protein (APP) are the main culprits in AD pathogenesis [5,6]. Based
on this hypothesis, several mechanisms for Aβ generation and deposition in the brain have been
suggested. These include mitochondrial dysfunction, oxidative stress, aging, apoptosis, genetic
factors and inflammatory processes [1]. Furthermore, other conditions that have been considered
as likely risk factors for developing AD; these include stroke, diabetes, cardiovascular diseases,
gender, lower level of education and traumatic brain injury [7–12].

Inflammation is considered to be a major factor in AD whereby the neurofibrillary tangles
and beta amyloid plaques co-localize with astrocytes and microglia as well as local immune
cells in the brain [13]. According to epidemiological studies, patients placed on long-term anti-
inflammatory drugs have a reduced risk of developing AD. Meanwhile, genome-wide association
studies (GWAS) have revealed a robust relationship between immunological function-regulating
genes and AD [14–16]. Substantiating these observations, both tau and amyloid pathologies have
been shown to be induced by pro-inflammatory stimuli [17,18].

To date, numerous trials for AD have been carried out with different anti-inflammatory drugs.
Both non-steroidal anti-inflammatory drugs (NSAIDs) and steroidal drugs were used for the
trials but none of these drugs demonstrated a clear clinical effectiveness in the treatment of AD
patients [19]. Since the pathogenesis of AD develops long before the manifestation of the clinical
symptoms it is, therefore, suggested that anti-inflammatory agents should be administered
prodromal [20]. Despite the fact that the largest trial conducted on the preventive effect of NSAIDs
on AD has failed [20], a recent review of the literature shows support for the use of NSAIDs for
preventing AD [21].

The fundamental mechanisms that implicate immune responses in AD pathology are still not
clear because the inflammation process could have either a detrimental or beneficial [22] effect
on AD, depending on the stage of the disease [23]. An example of pro-inflammatory mediators
secreted from active immune cells are microglia, which aggravate the Aβ pathology [24]. On
the other hand, activation of these cells can also arouse the clearance of Aβ plaques through
phagocytosis [25], thus representing a double role for inflammation on amyloid pathology. In this
review, we attempt to highlight the role of inflammation in AD.

2. Pathological hallmarks of AD
Currently, two pathological hallmarks are required in post-mortem observation of AD brain for
the confirmation of AD diagnosis viz: 1) intracellular neurofibrillary tangles (NFTs), in which the
main constituent is tau (hyperphosphorylated tau protein), and 2) extracellular insoluble senile
plaques (SP) composed of amyloid beta protein [26–28]. An increased ratio of fibrillogenic Aβ42
was observed in most of the mutations that cause familial AD (FAD) [29]. Recent discoveries have
revealed that intracellular Aβ42 and soluble Aβ oligomers (2e6 peptides), which are present in
neurons at the early stage of AD, exert more toxic effects than amyloid plaques [29–31]. Mutations
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of genes presenilin1 or presenelin2, which are responsible for encoding APP, can lead to FAD;
these were observed in several mouse models of AD that have been developed [32].

Production of Aβ is carried out through an unusual pathway by proteolysis of APP. The APP
is cut by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) at position 99 of the
C-terminus. Consequently, the C99-fragment is additionally cleaved by γ-secretase causing Aβ

formation. On the other hand, in the usual pathway, the proteolysis of APP is done by α-secretases
which cleave inside the Aβ precursor region, hence avoiding the formation of Aβ [29]. The other
pathological hallmark of AD is the presence of NFTs [10]. NFTs are located inside the pyramidal
neurons and are made up of tau and hyperphosphorylated tau proteins.

Under normal physiological conditions, tau is a soluble protein shouldered with the
responsibility of maintaining the stability of microtubules and helps in the axonal transport.
Under certain conditions these tau proteins become hyperphosphorylated, thus making them
insoluble and as well as sticky, causing them to aggregate and form filaments which have no
affinity to microtubules [33]. Hence, the microtubules become destabilized. The destabilization of
the microtubules affects the axonal transport of the cognitive neurotransmitters thereby affecting
memory and learning ability.

3. The link between inflammation and AD

(a) Inflammatory mechanisms in AD
The inflammatory hypothesis is one of the prominent hypothesis put forward to describe the
pathogenesis of AD. It is based on the tenet that “self-perpetuating progressive inflammation in
the brain culminates in neurodegeneration” (Figure 1) [34]. Presently, there is no any local inciting
inflammatory factor that is associated with AD, although it is proposed that inflammation can be
induced by the pathological hallmarks of AD (Aβ peptide plague and NFTs) or fragments of
degenerated neurons [35]. These pathological alterations are thought to excite glial cells to release
pro-inflammatory cytokines (e.g. tumor necrosis factor alpha (TNF)-α, interleukin (IL)-1β, IL-6,)
and inflammation reactive proteins (e.g. C-reactive protein (CRP)). The increased level of CRP
and pro-inflammatory cytokines could then act either through autocrine or paracrine pathways,
or both, to excite glial cells for additional production of p-tau, Aβ42, and pro-inflammatory
molecules. Therefore, a positively self-supporting sequence is created in which inflammatory
mediators perform a double role via stimulating glial cells and via activation of molecular
pathway causing neurodegeneration, as reviewed by Angela Kamer et al. [36]. This model is being
supported by many pieces of evidence. Senile plaques are associated with activated microglia
cells, reactive astrocytes, immunoreaction with antibodies (against C-reactive protein (CRP), TNF-
α, IL-6, and IL-1), and complement proteins [35]. TNF-α, IL-6, and IL-1 have the capability to
induce synthesis of Aβ42 and phosphorylation of tau protein, while p-tau and Aβ42 can cause
the production of TNF-α, IL-6 and IL-1 by glial cells [35,37,38].

There are few clinical studies supporting the role of inflammation in the pathogenesis of AD.
These studies explored the role played by systemic inflammatory markers and CRP in forecasting
the starting point of AD. High level of CRP increased the chance of developing both cognitive
decline [39] and AD in different populations [40]. A study conducted in Honolulu evaluated 1,050
subjects and reported that an elevated level of CRP increased the likelihood of AD development
25 years later in life [41].

(b) Pathogenesis of AD- Involvement of peripheral inflammatory
mechanism

The existence of activated glial cell that can produce elevated levels of inflammatory molecules
is one of the indicators of AD. When these inflammatory molecules are low, they might be
protective. Nevertheless, at higher levels as in AD, they can stimulate neurodegeneration [42],
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Figure 1. Inflammatory hypothesis of AD. Inflammatory stimuli (such as Aβ, NFTs, and fragments of neurons) activate

glial cells which in turn produce pro-inflammatory mediators and inflammatory reaction proteins. These products have

the ability to excite glial cells which further stimulates the production of P-tau, Aβ42, and additional pro-inflammatory

cytokines, and the cycle is maintained. The cycle promotes neurodegeneration and other AD pathologies.

which implies that any process capable of increasing the levels of inflammatory molecules
contribute to the development and progression of AD. Peripheral pro-inflammatory molecules
could also increase the brain inflammatory molecule pool in two mechanistic pathways, either
via neuronal pathways or systemic circulation.

In the neuronal pathway, afferent fibers of the peripheral nerves are stimulated by peripheral
cytokines which increase the expression of brain cytokines, or they can gain access into the brain
compartments or channels associated with peripheral nerves. Once inside the brain, even if it is
confined locally, they might increase the levels of brain cytokines significantly [43].

The systemic circulation pathway is an alternative mechanism through which pro-
inflammatory molecules could get access into the central nervous system (CNS). They can enter
via areas deficient of blood-brain barrier (BBB). Furthermore, they can enter through areas of
the BBB by: (1) using cytokines specific transporters, (2) crossing through fenestrated capillaries
in BBB, or (3) increasing the permeability of the BBB. Once in the brain, the pro-inflammatory
molecules might indirectly stimulate the glial cells to give rise to more pro-inflammatory
cytokines or they could directly upsurge the local pro-inflammatory cytokines. Once the glial
cells are previously primed or activated as in AD, stimuli by pro-inflammatory cytokines coming
from the periphery would result in overexpression of pro-inflammatory molecules, as reviewed
by Kamer et al. [36].

(c) Pathogenesis of AD- Peripheral infection
A study conducted on 135 healthy subjects and 128 AD patients provided evidence of the
various kinds of infections and burdens originating from bacteria. These infectious agents
included Helicobacter pylori, Chlamydophila pneumoniae, and Borrelia burgdorferi, and viruses
(cytomegalovirus and herpes simplex virus type 1 are associated with AD) [15]. A strong
relationship was observed between high level of infectious burden and increased serum levels
of Aβ markers and/or inflammatory cytokines in patients living with AD.

Chronic infections by these pathogens were shown to cause cardio-cerebral vascular
disorders [44], which consequently encouraged the development of AD [45]. That study provides
a strong proof that cumulative infections are associated with AD and supports the role of

Chiroma et al. Biomedical Research and Therapy 2018, 5(8): 2552-2564

Biomed. Res. Ther. 2018, 5(8): 2552-2564 2555



2556

B
iom

ed.
R

es.
Ther.

2018,5(8):
2552-2564

..............................................................

infectious agents and inflammation in the etiopathogenesis of AD. Recently, several articles have
demonstrated the involvement of infectious agents, such as fungus [46], protozoan [47], virus [48]
and bacteria [49], in the etiology of AD. These agents were found to be linked to cognitive
impairment and also implicated in the initiation and advancement of AD. In their review in 2014,
Licastro et al. reported an association between chronic bacterial inflammation and Herpes family
virus infections [48] in periodontal disease with AD. The study deliberated upon the probable
pathogenesis of AD in association with chronic infections and pointed out the participation of age-
dependent body immunity impairment, chronic activation of CNS, and systemic inflammatory
responses in the development of AD [50].

4. Role of inflammation on tau pathology in AD

(a) Induction of tau phosphorylation in tau models
The role of inflammation in aggravating the tau pathology was first seen from in vitro studies in
primary microglia cells stimulated by lipopolysaccharide (LPS) or Aβ before being cultured with
primary neocortical neurons [51]. This revolutionary study disclosed that secretion of IL-1β (a
pro-inflammatory cytokine) by microglial stimulation leads to elevation of tau phosphorylation
through activation of p38-mitogen-activated protein kinases (MAPK). This was further reaffirmed
in vivo using a 3xTg model that displayed both amyloid and tau pathologies [52]. Chronic
administration of LPS (0.5 mg/kg twice weekly for six weeks) activated tau phosphorylation
at several phosphorylation sites associated with pre- and post- tau tangle pathology in 3xTg
mice, as well as in early and advanced pathological stages [53]. Furthermore, microglial activation
and subsequent release of IL-1β were involved through stimulation of glycogen synthase kinase-
3β (GSK-3β) [54] or cyclin-dependent kinase-5 (CDK-5) [54]. Chronic overexpression of tumor
necrosis factor-α (TNF-α), a pro-inflammatory cytokine, led to an increase in the pre-tangle-
associated pT231 epitope [55].

On the other hand, when interferon-γ (IFNγ), another pro-inflammatory cytokine which is
prominently linked to viral infections, was overexpressed, dephosphorylation of tau occured
at the pre-tangle phosphorylation positions [56]. Cumulatively, these observations suggested
that the stimulation or inhibition of aggravation of tau pathology partly relies on the type of
pro-inflammatory cytokines or immunological stressor present at the time. Nevertheless, there
is evidence that chronic administration of NSAIDs (r-flurbiprofen or ibuprofen) causes tau
dephosphorylation [57–60], in spite of poor penetration to the brain [61], which suggests that
basal peripheral inflammation contributes to the progress of tau pathology, as reviewed by [20].

(b) Alterations in tau pathogenesis
Tau phosphorylation plays a key role in triggering a pathological cascade that eventually
culminates in the formation of NFT. There is a paucity of knowledge on the link associating the
development of AD pathology to tau phosphorylation since the latter does not always develop
into tau aggregates. For illustration, Sy et al. [54] reported an increased level of tau aggregation
after chronic administration of LPS in the 3xTg model. On the contrary, Lee [62] reported an
increase in tau phosphorylation with no effect on tau aggregation following acute LPS treatment
in the rTG510 model. It is worth noting that the phosphorylation epitopes affected in both studies
were the same [54,62], perhaps demonstrating the role of chronic versus acute effects, even though
amyloid might have played a role in the chronic study [63].

Recent development has shown that accumulation of tau oligomers at the synapses (instead
of NFTs) makes them the most dangerous species with great pathogenic potential, e.g. they are
believed to cause synaptic malfunction [64]. This is believed to occur through a process called
tau seeding, in which the tau oligomers have a special capability to propagate their pathology
to healthy neighboring neurons by crossing through synapses [64]. Evaluating the influence
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of inflammation on extracellular tau proteins will facilitate a superior understanding of the
inflammatory process in tau pathology.

Figure 2. Mechanisms involved in the role of inflammation in AD. Senile plaque deposits, neurofibrillary tangles,

damaged brain cells, peripheral infections, and activated glial cells can lead to brain changes present in AD, such as

neurodegeneration, neuroinflammation, and oxidative stress. When the neurotoxic insults are mild, the inflammation

serves as a defensive mechanism. However, when the insults are high, the inflammation is aggravated which, in turn,

increases neurodegeneration and AD pathology.

(c) Relevance of inflammation in tau pathology of AD
It has been proposed that inflammation plays a significant part in tau pathology. However, the
fundamental mechanistic pathways have remained vague. Although IL-1β signaling in microglia
is linked to damage, the relevance of the tau phosphorylation in tau pathology is not well-
understood. Pro-inflammatory cytokines significantly induce tau phosphorylation, but whether
or not this continues to form tau aggregates is elusive. On the other hand, there are evidence
which suggest a beneficial role of inflammation on tau pathology via induction of microglial
phagocytosis of tau oligomers, with the possibility of inhibiting the spread of tau pathology. Based
on the data from this review, inflammation is highly involved in tau pathology. However, most of
the work on tau protein has come from preclinical studies, therefore, clinical studies on the role
of inflammation in tau pathology is highly recommended.

5. Role of inflammation on Aβ pathology in AD
There are clear indications that inflammation occurs in pathologically vulnerable portions of the
AD brain and is associated with NFT formation, Aβ deposit, and neurite damage in those areas.
A multifaceted series of inflammatory mediators can be upregulated in response to inflammation
within the brain [35]Figure 2. The cytopathology as a response from inflammation (complement
activation, microgliosis, increased cytokine expression, astrocytosis, and acute phase protein
response) is thought to be representative of secondary responses following early accumulation of
Aβ in the brain [65]. The immune response in the brain that follows Aβ deposition results in the
accumulation of inflammatory mediators including free radicals, IL-1, IL-6, TNFα and microglia
activation, as reviewed by Verdile et al. [66].
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Even though inflammation seems to be a secondary response to Aβ accumulation, it is still
very important in AD pathology, and there are abundant evidence that have established the
role of inflammation in AD neurodegeneration. Firstly, the mechanisms of inflammation occur
in the region of AD brain showing high AD pathology; inflammation occurs less frequently or
is absent in regions with less AD pathology, such as the cerebellum [35] . Secondly, transgenic
animals that exhibit inflammatory cytokines show profound pathological changes, including
demyelination, neurodegeneration, and gliosis, as well as astrocytic and microglial activation [67].
Thirdly, several clinical trials using anti-inflammatory drugs have reported that these drugs slow
the progression or cause a delay in the onset of AD [35].

In AD development, production of Aβ and the failure of clearance of Aβ play very important
roles. The overall impairment in the clearance of Aβ in the brain has been found in AD.
Even though in the early stage, microglia can promote the clearance of Aβ and prevent the
pathologic progression in AD. Meanwhile, a tenacious microglial buildup can also release
cytotoxic molecules (e.g. reactive nitrogen species (RNS), ROS, chemokines, complement proteins
and pro-inflammatory cytokines) which can now elevate the production of Aβ and reduce the rate
of its clearance [68,69] through the process of irregular function of astrocytes and microglia [68,70],
decreased expression of Aβ-degrading enzymes, and loss of structural and function integrity of
BBB. Therefore, from these reports, inflammation can either increase or decrease AD pathology.

6. Conclusion
Inflammation has been found to be an integral part of Alzheimer’s disease. Some scientists believe
that inflammation is the primary cause of AD, while others suggest that inflammation occurs
because some proteins are deposited on the brain and the resulting inflammation aggravates
the situation. On the other hand, other researchers see inflammation as an innate immunity that
helps to defend the brain from neurotoxic proteins deposited on the brain. Whether inflammation
causes AD or whether inflammation is a defensive mechanism in AD, it can be confirmed
that inflammation is a fundamental part of AD. Further research should be conducted on
inflammatory targeted drugs and the role of inflammation in AD.
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59. Šimić G, Leko MB, Wray S, Harrington C, Delalle I, Jovanov-Milošević N.
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