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Abstract— Direct epigenetic reprogramming is a technique that converts a differentiated adult cell into another dif-
ferentiated cell—such fibroblasts to cardiomyocytes—without passage through an undifferentiated pluripotent stage. 
This novel technology is opening doors in biological research and regenerative medicine. Some preliminary studies 
about direct reprogramming started in the 1980s when differentiated adult cells could be converted into other differ-
entiated cells by overexpressing transcription-factor genes. These studies also showed that differentiated cells have 
plasticity. Direct reprogramming can be a powerful tool in biological research and regenerative medicine, especially 
the new frontier of personalized medicine. This review aims to summarize all direct reprogramming studies of somat-
ic cells by master control genes as well as potential applications of these techniques in research and treatment of se-
lected human diseases. 
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CELL FATE AND REPROGRAMMING                                                                     

The human body originates from a totipotent stem 

cell, the zygote. Development and growth of an organ-

ism are due to proliferation and differentiation of 

these cells. Stem cell proliferation by self-renewal 

causes an increase in cell numbers, while stem cell 

differentiation causes an increase in cell types. Alt-

hough all cells in the human body originate from a 

single cell, they play different roles. Their finalized 

specific functions are decided by mechanisms that are 

yet unclear, but it is considered that their functions are 

decided by their fates or programming (alterations in 

gene expression). From a single totipotent stem cell, 

generations of daughter cells are programmed into 

specific cell types that collaborate with each other to 

produce a completed body.  

In the traditional view, cell fates cannot be modified, 

and stem cell differentiation is unidirectional, in 

which only uncommitted or undifferentiated cells can 

differentiate into committed or specific cells. Howev-

er, to date, many studies prove that fully differentiat-

ed cells can reverse to pluripotent stem cells. This pro-

cess is termed as “reprogramming” (Fig. 1). 

 

REPROGRAMMING 

The first attempt of the reprogramming technique was 

performed by Robert Briggs and Thomas King. In 

1952, they injected an embryonic nucleus into an enu-

cleated egg in the amphibian Rana pipiens (Briggs and 

King, 1952), advancing from an oocyte to the tadpole 
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stage of development. However, this experiment 

failed when carried out with fully differentiated cells. 

These results made them conclude that differentiated 

nuclei cannot revert to a developing embryo (King 

and Briggs, 1955). Conversely, John B. Gurdon suc-

cessfully produced swimming tadpoles from trans-

plantation of differentiated tadpole intestinal epitheli-

al cell nuclei into enucleated eggs that were exposed 

to ultraviolet irradiation (Gurdon, 1962). By this result, 

Gurdon concluded that differentiated somatic cell nu-

clei can revert to pluripotency.  

 

 

Figure 1. Definitions of differentiation, reprogramming and 
direct reprogramming.  

 

Gurdon’s discovery opened a new field in animal de-

velopment biology. He presented a new mechanism 

that changed the opinion of hundreds of biological 

scientists. This discovery was confirmed by Wilmut et 

al. in 1997. Similarly, for the first time in a mammal, 

Wilmut successfully created the sheep Dolly by inject-

ing adult mammary epithelial cell nuclei into an enu-

cleated sheep egg (Wilmut et al., 1997). After these 

results, more than 10 different species, such as mouse, 

cow, pig, cat, and dog, have been “cloned” by the in-

jection adult cell nuclei into oocytes, and the technique 

is also called “somatic cell nuclear transfer—SCNT.”  

Although Gurdon showed that differentiated cell nu-

clei could be reprogrammed into the undifferentiated 

state to re-start development, many experiments also 

suggested that the intact, differentiated cells could be 

reprogrammed into undifferentiated cells. This was 

confirmed by Shinya Yamanaka in 2007. He choose 24 

transcription factors related to embryonic stem cells, 

and from these 24 genes his group demonstrated that 

only four genes, Myc, Oct3/4, Sox2, and Klf4 could re-

program mouse embryonic fibroblasts into pluripotent 

stem cells (Takahashi and Yamanaka, 2006). These 

stem cells were termed as induced pluripotent stem 

cells (iPSCs) by Yamanaka. iPSCs exhibit most of the 

characteristics of embryonic stem cells such as self-

renewal and long-term-multiple lineage differentia-

tion, and have been especially useful in the production 

of mouse chimeras. In 2007, Yamanaka and James 

Thomson’s laboratories were the first to successfully 

produce human iPSCs (Takahashi et al., 2007a; Yu et 

al., 2007). Yamanaka’s group used the four factors 

found in mouse: Oct4, Sox2, Klf4, and Myc (OSKM); 

Thomson used the set: Lin28, Nanog, Oct4, and Sox2. 

For these critical contributions in reprogramming 

technology, John Gurdon and Shinya Yamanaka 

shared a Nobel Prize in Physiology and Medicine in 

2012.  

Since 2006, iPSC technology has been continuously 

refined to produce iPSCs with higher efficiency and 

easier and safer production. In a study, OSKM was 

transfected in mouse embryonic fibroblasts by viral 

vectors (Takahashi et al., 2007b). Four of these factors 

would activate the pluripotent status of differentiated 

cells (Jaenisch and Young, 2008). In human fibroblasts, 

Oct4 and Sox2, together with Nanog and LIN28, can 

reprogram them toward pluripotent cells (Yu et al., 

2007).  

To improve the efficiency of reprogramming, subse-

quent studies used polycistronic vector containing 

four factors, chromatin-modifying chemicals, and 

mRNAs, in combination with activation or inhibition 

of various signaling pathways involved in the regula-

tion of cell proliferation (Chang et al., 2009; Feng et al., 

2009; Heinrich and Dimmeler, 2012; Kretsovali et al., 

2012).  

Some studies also significantly improved the safety of 

transgenes. In an early study, retroviral vectors were 

integrated into a genome, causing insertional muta-

genesis. This technique is can be modified by utilizing 

non-integrating vectors (Stadtfeld and Hochedlinger, 

2010; Stadtfeld et al., 2008). Further advances related 

to DNA-free transgenes using mRNAs or proteins 

were achieved (Jia et al., 2010; Warren et al., 2010; 

Zhou et al., 2009).  

With these improvements, clinical-grade iPSCs were 



Pham, 2015                                                                                                                                                     Biomed Res Ther 2015, 2(3): 231-240 
 

 
Direct reprogramming of somatic cells 

233 

developed in the recent years. Clinical grade iPSCs 

usually use donor cells such as fibroblasts, keratino-

cytes, and peripheral blood mononuclear cells 

(PBMCs), which are preferable for inducing pluripo-

tency. Moreover, clinical-grade iPSCs need to be pro-

duced from safer techniques, reducing the likelihood 

of accidently creating tumor-forming cells.  

Some safer techniques in gene transfection are used to 

produce vectors containing reprogramming genes. 

The first effort used F-deficient Sendai virus particles 

to induce pluripotency in somatic cells (Dowey et al., 

2012; Fusaki et al., 2009). iPSCs produced using this 

method must be sub-cultured for 10–20 passages to 

remove the excess virus particles and to make virus-

free iPSC lines. Later, an improvement in gene trans-

fection using temperature-sensitive Sendai virus parti-

cles made it is easier to remove the virus particles by 

temperature shift (Ban et al., 2011).  

Virus-free vectors carrying reprogramming factors 

have been studied since 2010 to replace the viral vec-

tors. Episomal DNA can be used to transfect 

transgenes into adult cells. These virus-free vectors 

have important clinical applications because they are 

safer in manipulations as well as in the patients. There 

are two kinds of episomes: non-replicating episomal 

vectors and replicating episomal vectors. The iPSC 

production procedure using non-replicating episomal 

vectors is of low-yield; therefore, multiple transfec-

tions are suggested as a solution to increase the iPSC 

production efficacy (Jia et al., 2010; Okita et al., 2008). 

Improvements such as the use of minicircle or codon-

optimized 4-in-1 minicircle (CoMiP) DNA vectors 

were devised (Lu et al., 2013; Okita et al., 2008).  

Although DNA-based episome is considered safe to 

reprogram adult cells to iPSCs, in principle, foreign 

DNA can integrate into the host genome. Therefore, 

iPSCs must be screened to select free cells for further 

applications (Gonzalez et al., 2009). To date, the safest 

technique of iPSC production is induction of pluripo-

tency via mRNA (Warren et al., 2012; Yoshioka et al., 

2013) or protein (Kim et al., 2009; Lee et al., 2012). 

These iPSCs are called “clean” iPSCs.  

Together with improvement of iPSC production 

methods, some approaches using iPSCs in treatment 

were also developed. The most significant approach 

for clinical applications of iPSCs relates to the combi-

nation of iPSC technology and targeting editing of the 

iPSC genome. This combination helps to push iPSCs 

into clinical treatment, particularly for patients with 

genetic disorders. There are three ways to correct the 

mutated genes in iPSCs: the zinc finger nuclease 

(ZFN) system, the transcription activator-like effector 

nuclease (TALEN) system, and the clustered regularly 

interspaced short palindromic repeats (CRISPR) sys-

tem (Ding et al., 2013; Hockemeyer et al., 2009; Horii et 

al., 2013). By using these techniques, patient-specific 

iPSCs were successfully produced to treat epilepsy 

(Parent and Anderson, 2015), myotonic dystrophy 

type 1 (Xia et al., 2015), sickle erythrocytes (Huang et 

al., 2015), retinal degenerative diseases (Wiley et al., 

2015), and recessive dystrophic epidermolysis bullosa 

(Sebastiano et al., 2014).  

  

DIRECT REPROGRAMMING 

The direct reprogramming technique was discovered 

in the 1980s (Table 1). In 1987, Davis et al. converted 

embryonic mouse fibroblasts into muscle cells by 

transfection of myogenic differentiation factor (MyoD) 

(Davis et al., 1987). Similarly, MyoD was used to re-

program immature chondrocytes, smooth muscle 

cells, and retinal cells into muscle cells (Choi et al., 

1990). In the 1990s, some other transcription factors 

were discovered, particularly globin transcription fac-

tor 1 (Gata-1), that can reprogram avian monocyte 

precursors into erythrocytes, eosinophils, and 

megakaryocytes (Kulessa et al., 1995).  

Since 2000, several transcription factors were discov-

ered and were successfully used to reprogram target 

cells such as pancreatic islet cells (Zhou et al., 2008), 

neurons (Fishman et al., 2015; Vierbuchen et al., 2010), 

hepatocytes (Huang et al., 2011; Sekiya and Suzuki, 

2011), endothelial cells (Ginsberg et al., 2012; Han et 

al., 2014), smooth muscle cells (Karamariti et al., 2013), 

and hepatocyte like cells (Simeonov and Uppal, 2014). 

In recent years, in situ direct reprogramming as well as 

in vivo direct reprogramming has become important, 

as the ability to provide novel therapies is nearly in 

clinical applications. In vivo direct reprogramming is 

the usage of specific transcription factors to change 

target cell fate in the body without the need to isolate 

the target cells (Table 1). 
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Table 1. Direct reprogramming presented in the Literature 

Final cell type Starting cell type Transcription         
factors 

Species Author/year 

Myoblasts Fibroblasts MyoD Mouse (Davis et al., 1987) 
Myoblasts Fibroblasts, pigment, 

nerve, fat, liver cells 
MyoD Mouse, rat, 

chicken, human 
(Lassar et al., 1989) 

Myoblasts Fibroblasts, chondro-
blasts, smooth muscle, 
retinal pigmented epi-
thelial cells 

MyoD Mouse, rat, 
chicken, human 

(Choi et al., 1990) 

Adipocytes 3T3 fibroblast PPAR-gamma Mouse (Tontonoz et al., 1994) 
Adipocytes  Fibroblast C/EBPalpha Mouse (Freytag et al., 1994) 
Eosinophils and 
thromboblasts  

Myelomonocytes GATA-1 Chicken (Kulessa et al., 1995) 

Adipocytes Myoblasts PPAR-gamma, 
C/EBPalpha 

Mouse (Hu et al., 1995) 

Macrophages B-cells CEBP alpha and CEBP 
beta; CEBBP alpha-
PU.1 

Mouse (Xie et al., 2004) 

Macrophages Pre-T-cells CEBP alpha-PU.1 and 
CEBP beta 

Mouse (Laiosa et al., 2006) 

Neurons Astroglial cells Neurogenin2, Mash1 Mouse (Berninger et al., 2007) 
Macrophages Fibroblasts CEBP alpha-PU.1 Mouse (Feng et al., 2008) 
Beta cells Pancreatic exocrine 

cells 
Ngn3, Pdx1, MafA Mouse (Zhou et al., 2008) 

Cardiomycytes Posterior and medical 
mesoderm, amnion 

Gata4, Tbx5, Baf60c Mouse (Takeuchi and Bruneau, 
2009) 

Macrophages B-cells CEBP alpha and CEBP 
beta 

Mouse (Bussmann et al., 2009) 

Monocytes Neural stem cells PU.1 Mouse (Forsberg et al., 2010) 
GABAergic neurons Astroglial cells Dlx2 Mouse (Heinrich et al., 2010) 
Cardiomycytes Fibroblasts Oct4, Sox2, Klf4, C-

myc 
Mouse (Efe et al., 2011) 

Neurons Embryonic and postna-
tal fibroblast 

Ascl1, Brn2, Myt1l, 
NeuronD1 

Human (Vierbuchen et al., 2010) 

Neurons Fibroblast miR-9/9, miR-124, 
NeuronD12, Ascl1, 
Myt1l 

Human (Yoo et al., 2011) 

Dopaminergic neu-
rons 

Fibroblast Mash1, Nurr1, Lmx1a Mouse and hu-
man 

(Caiazzo et al., 2011) 

Dopaminergic neu-
rons 

Fibroblast Ascl1, Pitx3, Lmx1a, 
Nurr1, Foxa2, EN1 

Mouse (Kim et al., 2011) 

Neurons Embryonic and postna-
tal fibroblast 

Ascl1, Brn2, Myt1l Human (Pfisterer et al., 2011) 

Hepatocytes Embryonic and adult 
fibroblast 

Hnf4a plus Foxa1, 
Foxa2 and Foxa3 

Mouse (Sekiya and Suzuki, 2011) 

Neurons Embryonic fibroblasts Brn2, Ascl1, Myt1l Mouse (Adler et al., 2012) 
Angioblast-like 
progenitor cells 

Fibroblasts to Oct4, SOX2, KLF4, c-
Myc and miRs302–367 

Human (Kurian et al., 2013) 

Bipotential hepatic 
stem cells 

Fibroblasts  Gata4, Hnf1α, and 
Foxa3 

Human (Yu et al., 2013) 

Myocytes Fibroblasts MyoD Mouse (Bichsel et al., 2013) 
Neurons Fibroblasts, Hepatocytes Ascl1, Brn2, and Myt1l Mouse (Marro and Yang, 2014) 
Melanocytes Fibroblasts  MITF, SOX10 and 

PAX3 
Mouse and Hu-

man 
(Yang et al., 2014) 

Pancreatic islets-like 
cells 

Hepatocytes  miRNA-302 Human (Lu et al., 2014) 
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MECHANISMS OF DIRECT REPROGRAM-
MING 

In early studies, it was shown that transcription fac-

tors can directly affect reprogramming. Recent studies 

indicated that there are at least five kinds of repro-

gramming factors that can directly reprogram adult 

cells into other phenotypic cells: transcription factors, 

epigenetic regulators, miRNAs, Small molecules, and 

pluripotency factors for direct reprogramming.  

 

Transcription factors 

Different from reprogramming techniques make adult 

cells pluripotent after receiving some key transcription 

factors causing epigenetic modifications, direct repro-

gramming mechanisms are still elusive. The most im-

portant mechanism is the effect of transcription factors 

that drive the phenotype changes in specific cells. By 

using transcription factors, transfected cells can 

change phenotype via activation of target genes. Inter-

estingly, these changes can occur some hours after 

transfections (Ieda et al., 2010), do not require cell di-

vision (Heinrich et al., 2010; Vierbuchen et al., 2010), 

and are stable after removal of reprogramming factors 

(Huang et al., 2011; Sekiya and Suzuki, 2011). Some 

authors have demonstrated that direct reprogram-

ming of fibroblasts to neurons was hierarchical, estab-

lished mechanisms dictate that fibroblasts gradually 

change with multiple steps to become neurons 

(Wapinski et al., 2013).  

  

Epigenetic regulators 

Differentiated status of cells seems depend on epige-

netic status of these cells. Transcription factors are 

known as important factors effecting to expression of 

lineage specific genes. However, gene expression also 

is effected by epigenetic regulators. In fact, there are 

three ways that epigenetic regulators effect gene ex-

pression. First, epigenetic regulators can decide the 

reprogramming process by themselves. For example, 

pancreatic beta cells can be reprogrammed into alpha 

cells by DNA methyltransferase Dnmt1 deficiency 

(Dhawan et al., 2011). Second, epigenetic regulators 

can interact with exogenous factors to re-activate or 

suppress related gene expression. In the study by 

Takeuchi and Bruneau (2009), they showed that Baf60c 

– cardiac specific subunit of BAF chromatin remodel-

ing complexes hold a particular role in the repro-

gramming from mouse mesoderm to cardiac myocytes 

that is helped by Gata4 – a transcription factor to bind 

to cardiac genes (Takeuchi and Bruneau, 2009). Third, 

some epigenetic regulators act as epigenetic barriers 

that can prevent reprogramming. In fact, the inhibi-

tion or removal of histone deacetylases and polycomb 

repressor complex 2 (PRC2) can facilitate the repro-

gramming of germ cells into neurons (Patel et al., 

2012).  

 miRNAs 

More and more studies proved that miRNAs play im-

portant roles in the reprogramming process. Some 

specific miRNAs such as miR-124, miR-9/9, miR-1, 

miR-133, miR-208, and miR-499 were demonstrated 

with reprogramming effects in fibroblasts. Overex-

pression of miR-9/9 and miR-124 in human fibroblasts 

can induce the expression of markers indicative of 

neuron-like cells (Yoo et al., 2011). It seems that miR-

NAs can regulate some mechanisms relating to epige-

netic reprogramming. In fact, miRNAs can directly 

stimulate or suppress target genes (Bartel, 2009) as 

well as regulate epigenetic regulators (Neo et al., 

2014). However, in general, miRNAs are not as effi-

cient as transcription factors to induce epigenetic re-

programming.  

 

 Small molecules 

Some small molecules were successfully used to pro-

duce iPSC (Li et al., 2013b). The main advantage of 

small molecules is small structure, therefore they can 

more easily move across cellular membranes. By this 

advantage, small molecules are more richly investigat-

ed in recent studies. The biggest success in direct re-

programming by small molecules is the neural con-

version process (Kim et al., 2014; Sayed et al., 2015). 

How the small molecules can reprogram the cell fate is 

a question that needs to be answered. In some cases, 

small molecules activate some pluripotency genes 

(Hou et al., 2013) as well as transcription factors (Yuan 

et al., 2013).  

 

 Pluripotency Factors for Indirect Repro-

gramming 

Some pluripotency factors used to produce iPSC can 

directly reprogram some cell types such as cardiomy-

ocytes (Efe et al., 2011), neural stem cells or progeni-

tors (Wang et al., 2013), angioblast-like progenitor cells 
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(Kurian et al., 2013), endothelial cells (Li et al., 2013a), 

pancreatic lineages (Li et al., 2014), and hepatocytes 

(Zhu et al., 2014). Ma et al. (2013) showed that pluripo-

tent factors can reprogram adult cells into pluripotent 

cells with multiple steps and that at certain steps some 

cells’ fates are formed as transition stages of epigenetic 

reprogramming (Ma et al., 2013). Moreover, overex-

pression of pluripotent factors can also induce differ-

entiation (Loh and Lim, 2011).  

Although direct reprogramming can produce the 

functional cells that can be used in translational appli-

cations as well as therapy, the main limitation of this 

technology is slow or non-proliferation of repro-

grammed cells. Therefore, direct reprogramming 

should be improved in order to produce proliferating 

cells such as tissue specific stem cells or progenitor 

cells more than fully differentiated cells. In fact, some 

kinds of stem cells as well as progenitor cells were 

produced by direct reprogramming technology, in-

cluding neural stem cells or progenitors (Han et al., 

2012; Schindeler et al., 2015; Thier et al., 2012), oli-

godendrocyte precursor cells (Najm et al., 2013), he-

patic stem cells (Yu et al., 2013), HSCs (Riddell et al., 

2014), and hematopoietic multipotent progenitors 

(Batta et al., 2014; Sandler et al., 2014).   

 

INVIVO DIRECT REPRORAMMING 

As direct reprogramming technology is gradually per-

fected, especially its efficiency in combination with the 

tools of in situ gene therapy that were developed in 

previous studies. In vivo direct reprogramming has 

become more interesting as a novel therapy in regen-

erative medicine. Using in situ gene therapy strategies 

with direct reprogramming factors, some preclinical 

trials with a mouse model were successful in the con-

version of various cerebral cell types into neurons 

(Heinrich and Rouaux, 2015). By enhanced expression 

of Sox10 in Satellite Glial cells, Weider et al (2015) suc-

cessfully induced these cells in vivo into oligodendro-

cyte-like cells (Weider et al., 2015).  

Particularly, reactive glial cells in the cortex of stab-

injured or Alzheimer's disease (AD) model mice can 

be directly reprogrammed into functional neurons in 

vivo using retroviral expression of a single neural tran-

scription factor, NeuroD1 (Guo et al., 2014). More im-

portantly, cardiac injury model mice can be treated by 

in vivo direct reprogramming(Jayawardena et al., 

2015). miRNAs and lentiviral vectors were injected 

into these mice. After 5-6 weeks, cardiac function was 

improved, associated with existence of cardiac myo-

cyte-like cells in injected sites. 

 

CONCLUSION 
Epigenetic reprogramming has seen rapid growth in 

recent years. Supported by some modern molecular 

biology techniques, reprogramming technology is be-

coming important and promising for wide use in basic 

research to translational research, and clinical applica-

tion in the near future. Direct epigenetic reprogram-

ming is a combination of stem cell therapy and gene 

therapy that can induce cell regeneration in an in situ 

manner. Many non-viral vectors and some novel re-

programming factors have facilitated direct repro-

gramming applications in preclinical models. Direct 

reprogramming, however, also faces with some chal-

lenges. Safety of vectors as well as technology must be 

investigated and carefully evaluated, especially in vi-

ral vector transfections or DNA transfection. Another 

challenge relates to control of reprogramming effi-

ciency as well as specificity of target cells in vivo. 

 

ABBREVIATIONS 

AD: Alzheimer's disease; PRC2: Polycomb repressor 

complex 2; ZFN: zinc finger nuclease; HSCs: Hemato-

poietic stem cells; iPSC: Induced pluripotent stem 

cells.  
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