

POSTER

Experimental reprogramming of murine embryonic fibroblasts towards induced pluripotent stem cells using a single polycistronic vector

Oanh Thuy Huynh¹, Mai Thi-Hoang Truong¹, Phuc Van Pham^{1,2}

¹Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam

²Laboratory of Cancer Research, University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam

Abstract

Background: Embryonic stem cells are pluripotent, thus capable of differentiating into all types of cells derived from the three germ layers. However, the application of embryonic stem cells (ESCs) for preclinical and clinical studies is difficult due to ethical concerns. Induced pluripotent stem cells (iPSCs) are derived from differentiation and have many ESC characteristics. The study herein examines the production of iPSCs from reprogramming of mouse embryonic fibroblasts (MEFs) via transduction with defined factors.

Methods: MEFs were collected from mouse embryos via a previously published protocol. The cells were transduced with a single polycistronic viral vector encoding mouse cDNAs of Oct₃/₄, Sox₂, Klf₄ and c-Myc. Transduced cells were treated and sub- cultured with ESC medium. The cells were evaluated as iPSCs with specific morphology, and expression SSEA-1, Oct₃/₄, Sox₂ and Nanog. In addition, they were also evaluated for pluripotency by assessing alkaline phosphatase (AP) activity and in vivo teratoma formation.

Results: Under the reprogrammed conditions, the transduced cells displayed a change in morphology, forming ESC-like clusters. These cell clusters strongly expressed pluripotent markers as well as ESC-specific genes. Furthermore, the colonies exhibited higher AP activity and formed teratomas when injected into the murine testis.

Conclusion: The study herein suggests that MEFs can be reprogrammed into iPSCs using a polycistronic viral vector encoding mouse cDNAs for Oct₃/₄, Sox₂, Klf₄ and c- Myc.

Keywords

Polycistronic vectors, Epigenetic reprogramming, iPSCs, Fibroblast reprogramming

Funding

References

*For correspondence:

pvphuc@hcmus.edu.vn

Received: 2017-06-27

Accepted: 2017-07-14

Published: 2017-09-05

by BioMedPress (BMP).

the source are credited.

exist.

Competing interests: The authors

declare that no competing interests

Copyright The Author(s) 2017. This

article is published with open access

This article is distributed under the

Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

terms of the Creative Commons