

ISSN: 2198-4093 www.bmrat.org

ORAL

Molecular mechanisms underlying resistance to MEK1/2 inhibitor in BRAF-mutated colorectal cancer

Hong-Quan Duong ^{1,2,4}, Sylvain Delaunay ^{1,5}, Pierre Close ^{1,5}, Kateryna Shostak ^{1,2}, Alain Chariot ^{1,2,3}

¹ Interdisciplinary Cluster for Applied Genoproteomics (GIGA),

² Laboratory of Medical Chemistry,

- ³ Walloon Excellence in Life Sciences and Biotechnology (WELBIO),
- ⁴ Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hanoi 10000, Vietnam

⁵ Laboratory of Cancer Signaling, GIGA-Signal Transduction, University of Liege, CHU, Sart-Tilman, 4000 Liege, Belgium

*For correspondence:

v.quandh1@vinmec.com

Competing interests: The authors declare that no competing interests exist.

Received: 2017-07-12 Accepted: 2017-08-17 Published: 2017-09-05

Copyright The Author(s) 2017. This article is published with open access by BioMedPress (BMP).

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Abstract

Colorectal carcinomas are characterized by multiple genetic alterations, including constitutive Wnt activity and gain-of-function mutations in K-RAS and B-RAF. BRAF encodes a Ser/Thr kinase acting in the Ras/MEK/ERK pathway and the V600E mutation found in 11% of colorectal cancers renders this kinase constitutively active. B-RAF mutated colorectal carcinomas represents a very aggressive entity with a poor prognosis. Understanding the molecular mechanisms activated downstream of mutated B-RAF is urgently needed to design new therapeutic avenues to treat B-ARF mutated colorectal carcinomas and to circumvent resistance to therapies targeting the Ras/Raf/MEK1/ERK1/2 pathway. In a search for candidates that critically contribute to both intrinsic and acquired resistance to MEK1 inhibition in B-RAF mutated colorectal cancer cells, we identified one scaffold protein whose expression is driven by both NF-kB and AP-1 families of transcription factors. This scaffold protein promotes the expression of HER2 and HER3 in colorectal cancer cells subjected to MEK1 or B-RAF inhibition (Selumetinib and Vemurafenib, respectively) and, as such, is critically involved in the intrinsic resistance to these targeted therapies. The same scaffold protein is also strongly induced in B-RAF but not K-RAS mutated colorectal cancer cells showing acquired resistance to MEK1 inhibition. Interfering with the expression of this scaffold protein circumvents both intrinsic and acquired resistance to Selumetinib in B-RAF mutated colorectal cancer cells. Our study defines a new molecular actor critically involved in oncogenic signaling pathways triggered by mutated B-RAF. Our study also defineS new combinatory therapies to better treat B-RAF-mutated colorectal carcinomas.

Keywords

Colorectal cancer, Resistance, MEK1/2 inhibitor, BRAF

Funding

References